The relationship between land use changes and the urban heat island phenomenon in Jakarta, Indonesia
The increase in population has impacted the development of the city. It results in an increase of anthropogenic activities, that also means an increase in the number of buildings, as well as the length of the road.

Anthropogenic activities could impact directly or indirectly on climate change. The phenomenon of climate change especially the UHI phenomenon is already a case that requires serious attention, as it can have an impact that inconveniences the community.

Some results of the study conducted in Jakarta city showed that there are differences in the maximum temperatures, and achieved a minimum of 1°C difference between Jakarta City (urban) and Bogor (rural). Since the occurrence of rapid urbanization in 1991, Jakarta City now consists of various buildings that include settlements, offices, and industrial buildings. Therefore, surely the increase of land development area in Jakarta City resulted in the increase of retained heat by buildings and the other objects, and the reduction of radiative heat emission at night. In addition, the effect can result in a sheltering effect which reduces heat loss convection from the surface and the air near the surface, causing an increase UHI phenomenon in Jakarta City. Based on the description, this paper attempts to study and analyze the relationship between the increase in land area development and the development of UHI phenomenon in Jakarta City. This study uses temperature data from 1981 to 2010 and Landsat satellite imagery of four (4) areas namely 1980, 1990, 2000, and 2010. The analysis of the land use change is provided by the Geographic Information System (GIS) software R Mapper and Map Info Professional 8.5 SCP. However, the relevance between changes in land use patterns with increasing temperature is counted using Excel program.

GIS is the data or associated information, with geolocated (spatial coordinates of the earth’s surface).
first is the Canadian GIS (1960), a computer device used to input, store, edit, analyze and produce an output containing the information. The study area includes Jakarta City and the surrounding areas. Jakarta is the capital of Indonesia that consists of an area about 66152 km² and is at a height about eight meters above sea level. It is located in the north of Java Island, bordering the City of Bogor in the south, while to the east lies West Java and Banten to the west. Map of the study area is taken from the terrain map of Indonesia (RBI) 2009 because the latest RBI map is produced in 2009. In addition, changes in land use from 2009 up to now are not significant. Therefore, the map is best to use as the basis for creating a location map of the study. Map locations are shown in Figure 1 to 60755 km² (86.81%) in 1990. After that, it reached 68175km² (97.2%) in 2000, and it grew to 69624km² (97.8%) in 2010. The results showed the largely increasing acreage in Jakarta City especially starting from 1980 to 1990, with a progress of over 100% from 42.03% of the total land area, and 86.81% in 1990 increase in land development due to housing constructions, industries and paved streets in the years between 1980 and 1990. This resulted in the occurrence of a significant temperature rise in Jakarta City. The results showed that changes in land use of Jakarta City over time were significant, based on Land sat TM imagery treatment in 1980, 1990, 2000, and 2010 in Figure 2. Additionally, the land use of each area is described in Table 1.

Based on Figure 2, it is known that the land use changes in Jakarta City are very significant. Land use changes are the most noticeable in the increased acreage of development from time to time. Starting in 1980, the land was awakened for 294.85 km² (42.03%), increased at the same time, rapid increase in temperature occurred in Jakarta. Therefore, the results showed a highly significant correlation between increasing acreage with an increasing temperature in the area. That applies at both stations namely Kemayoran and Pondok Betung stations with the correlation of each R² = 0.7187 and R² = 7319 (Figure 3). According to the study in Bandung, Bogor and North Cianjur, the results of this study found that the more the land awakened, the bigger the increase in high temperatures. The results of this study can show the extent of population growth in Jakarta City. The impact of increased anthropogenic activities, further accelerated development speed such as housing, industry, public services, and paved roads. It is tangible that rapid increased in land use change from naturally developed area. As a result, heat is trapped in urban areas, and an increase UHI phenomenon occurs in Jakarta City.
The magnitude of the velocity increase UHI phenomenon in Jakarta City should get serious attention from the government, private, and community. The government should make a variety of policies that can reduce the velocity increase UHI phenomenon in the region, including policies regarding the addition and rejection damage of green open space (GOS). Currently, Jakarta City was almost full of buildings, therefore it can be replaced with good management of the park by planting greenery and providing shower in the home page or post. This could increase the humidity which can reduce the latent heat in the area. Furthermore, the buildings can also be constructed using white and green technologies such as: roof garden, green wall, and green roof. The white building has been developed in Yunani, meanwhile many green technologies developed in China and Soul, South Korea. White building can increase the albedo acceptance of sunlight. Meanwhile, green technology can increase humidity in urban areas. Therefore, all these things can reduce the velocity of rising temperatures in urban areas, especially in Jakarta City.