Semiconductor TiO2 Coating Deposited by Microwave Plasma Method

Article Preview

Abstract:

Transparent conducting glass is a crucial layer of Dye Synthesized Solar Cell (DSSC), due to it allows sunlight penetrating to the solar cell. DSSC has a low efficiency until semiconductor Titanium Dioxide (TiO2) was employed as the anode material. TiO2 has a high photosensitivity, high structure, stability under solar irradiation and in solution, and low cost. In this study TiO2 was deposited on the conductive glass using microwave plasma method. Plasma was generated using electromagnetic wave from microwave magnetron. TiO2 powder was dissolved using pure water and ethanol at different concentration. The coating process was conducted on a 2.5 x 2.5 cm of a conductive glass, and the effect of plasma generation time was observed at 0.5, 1, 2, 3, and 5 minutes. The thickness, roughness, and microstructure of TiO2 coating on the conductive glass was observed using 3D measuring laser OLS4100. The result shows that the fabrication of TiO2 coatings using microwave plasma is feasible. The concentration of solution and plasma generation time plays an important role to the thickness, roughness, and microstructure of TiO2 coatings. An optimum result was obtained at plasma generation time of 0.5 minute with 12.49 μm and 3.398 μm of thickness and roughness respectively using 10 g TiO2 + 50 ml ethanol and 40 ml H2O.

Universitas Negeri Makassar is not subscribed to the content you wish to access. Please contact your librarian for a subscription.
You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-66

Citation:

Online since:

June 2023

Export:

Price:

* - Corresponding Author

[1] S. Umale, V. Sudhakar, S. M. Sontakke, K. Krishnamoorthy, and A. B. Pandit, Improved Efficiency of DSSC using Combustion Synthesized TiO2, Materials Research Bulletin. 109 (2019) 222-226.

DOI: 10.1016/j.materresbull.2018.09.044

Google Scholar

[2] A. K. Baranwal et al., Combining novel device architecture and NIR dye towards the fabrication of transparent conductive oxide-less tandem dye sensitized solar cell, Applied Physics Express 8 (2015) 1–3.

DOI: 10.7567/apex.8.102301

Google Scholar

[3] A. Hayat et al., Dye-sensitized solar cells based on axially ligated phosphorus-phthalocyanine dyes, Applied Physics Express 8 (2015) 1–5.

DOI: 10.7567/apex.8.047001

Google Scholar

[4] N. A. Karim, U. Mehmood, H. F. Zahid, and T. Asif, Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs), Solar Energy. 185 (2019) 165–188.

DOI: 10.1016/j.solener.2019.04.057

Google Scholar

[5] J. Gong, J. Liang, and K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable and Sustainable Energy Reviews. 16 (2012) 5848–5860.

DOI: 10.1016/j.rser.2012.04.044

Google Scholar

[6] L. Nahar and I. U. Arachchige, Sol-Gel Methods for the Assembly of Metal and Semiconductor Nanoparticles, JSM Nanotechnology and Nanomedicine. 1 (2013) 1–6.

Google Scholar

[7] A. K. Krella, A. Krupa, M. Gazda, A. T. Sobczyk, and A. Jaworek, Protective properties of Al2O3 + TiO2 coating produced by the electrostatic spray deposition method, Ceramics International. 43 (2017) 2126–12137.

DOI: 10.1016/j.ceramint.2017.06.070

Google Scholar

[8] W. Kim, J. Park, H. Kim, Y. Pak, H. Lee, and G. Y. Jung, Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI3-xClx into Mesoporous TiO2 for Stable Hybrid Perovskite Solar Cells, Electrochimica Acta. 245 (2017) 734–741.

DOI: 10.1016/j.electacta.2017.05.184

Google Scholar

[9] J. Sung, M. Shin, P. R. Deshmukh, H. S. Hyun, Y. Sohn, and W. G. Shin, Preparation of ultrathin TiO2 coating on boron particles by thermal chemical vapor deposition and their oxidation-resistance performance, Journal of Alloys and Compounds. 767 (2018) 924–931.

DOI: 10.1016/j.jallcom.2018.07.152

Google Scholar

[10] N. Amaliyah, S. Mukasa, S. Nomura, and H. Toyota, Plasma In-liquid Method for Reduction of Zinc Oxide in Zinc Nanoparticle Synthesis, Material Research Express. 2 (2015).

DOI: 10.1088/2053-1591/2/2/025004

Google Scholar

[11] Y. Hattori, S. Mukasa, H. Toyota, T. Inoue, and S. Nomura, Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water, Materials Chemistry and Physics. 131 (2011) 425–430.

DOI: 10.1016/j.matchemphys.2011.09.068

Google Scholar

[12] A. Ranjan, A. Islam, M. Pathak, M. K. Khan, and A. K. Keshri, Plasma sprayed copper coatings for improved surface and mechanical properties, Vacuum. 168 (2019) 108834.

DOI: 10.1016/j.vacuum.2019.108834

Google Scholar

[13] G. Lin, J. Chen, W. Tseng, and F. Lu, Formation of Anatase TiO2 coatings by plasma electrolytic oxidation for photocatalystic applications, Surface & Coatings Technology. 357 (2018).

DOI: 10.1016/j.surfcoat.2018.10.010

Google Scholar

[14] H. Nagasawa, J. Xu, M. Kanezashi, and T. Tsuru, Atmospheric-pressure plasma-enhanced chemical vapor deposition of UV-shielding TiO2 coatings on transparent plastics, Materials Letters. 228 (2018) 479–481.

DOI: 10.1016/j.matlet.2018.06.053

Google Scholar

[15] A. Fattah-alhosseini, M. Molaei, and K. Babaei, The effects of nano- and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: A review, Surfaces and Interfaces. 21 (2020) 100659.

DOI: 10.1016/j.surfin.2020.100659

Google Scholar

[16] Y. Bai, K. A. Kim, I. S. Park, S. J. Lee, T. S. Bae, and M. H. Lee, In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing, Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 176 (2011) 1213–1221.

DOI: 10.1016/j.mseb.2011.06.019

Google Scholar

[17] M. Aliofkhazraei, R. S. Gharabagh, M. Teimouri, M. Ahmadzadeh, G. B. Darband, and H. Hasannejad, Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium, Journal of Alloys and Compounds. 685 (2016) 376–383.

DOI: 10.1016/j.jallcom.2016.05.315

Google Scholar

[18] E. Nikoomanzari, A. Fattah-alhosseini, M. R. Pajohi Alamoti, and M. K. Keshavarz, Effect of ZrO2 nanoparticles addition to PEO coatings on Ti–6Al–4V substrate: Microstructural analysis, corrosion behavior and antibacterial effect of coatings in Hank's physiological solution, Ceramics International. 46 (2020) 13114–13124.

DOI: 10.1016/j.ceramint.2020.02.084

Google Scholar

[19] M. Roknian, A. Fattah-alhosseini, S. O. Gashti, and M. K. Keshavarz, Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution, Journal of Alloys and Compounds. 740 (2018) 330–345.

DOI: 10.1016/j.jallcom.2017.12.366

Google Scholar

[20] S. Sarbishei, M. A. Faghihi Sani, and M. R. Mohammadi, Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process, Ceramics International. 42 (2016) 8789–8797.

DOI: 10.1016/j.ceramint.2016.02.120

Google Scholar

[21] M. Shokouhfar and S. R. Allahkaram, Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation. 309 (2017).

DOI: 10.1016/j.surfcoat.2016.10.089

Google Scholar

[22] P. Wang et al., Effect of Al2O3 particle concentration on the characteristics of microarc oxidation coatings formed on pure titanium, International Journal of Electrochemical Science. 13 (2018) 8995–9006.

DOI: 10.20964/2018.09.66

Google Scholar

[23] P. Wang et al., Effect of MgO microparticles on characteristics of microarc oxidation coatings fabricated on pure titanium, International Journal of Electrochemical Science. 14 (2019) 287–300.

DOI: 10.20964/2019.01.16

Google Scholar

[24] S. Di, Y. Guo, H. Lv, J. Yu, and Z. Li, Microstructure and properties of rare earth CeO2-doped TiO2 nanostructured composite coatings through micro-arc oxidation, Ceramics International. 41 (2015) 6178–6186.

DOI: 10.1016/j.ceramint.2014.12.134

Google Scholar

[25] A. Bordbar-Khiabani, S. Ebrahimi, and B. Yarmand, Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets, Applied Surface Science. 486 (2019) 153–165.

DOI: 10.1016/j.apsusc.2019.05.026

Google Scholar

[26] H. Yu et al., Surface & Coatings Technology Ti 3 AlC 2 coatings deposited by liquid plasma spraying, Surface & Coatings Technology. 299 (2016) 123–128.

DOI: 10.1016/j.surfcoat.2016.04.076

Google Scholar

[27] L. Xu et al., Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment, Surface and Coatings Technology. 342 (2018) 12–22.

DOI: 10.1016/j.surfcoat.2018.02.044

Google Scholar

[28] E. Santos et al., Effect of anodizing time on the mechanical properties of porous titania coatings formed by micro-arc oxidation, Surface and Coatings Technology. 309 (2016) 203–211.

DOI: 10.1016/j.surfcoat.2016.11.063

Google Scholar

[29] T. A. Ruhane et al., Impact of photo electrode thickness and annealing temperature on natural dye sensitized solar cell, Sustainable Energy Technologies and Assessments. 20 (2017) 72–77.

DOI: 10.1016/j.seta.2017.01.012

Google Scholar

[30] A. Khalifa et al., Comprehensive performance analysis of dye-sensitized solar cells using single layer TiO2 photoanode deposited using screen printing technique, Optik. 223 (2020) 165595.

DOI: 10.1016/j.ijleo.2020.165595

Google Scholar

[31] O. Kovářík et al., The influence of substrate temperature on properties of APS and VPS W coatings, Surface and Coatings Technology. 268 (2015) 7–14.

DOI: 10.1016/j.surfcoat.2014.07.041

Google Scholar

[32] D. Rangel, J. C. Gallegos, S. Vargas, F. García, and R. Rodríguez, Optimized dye-sensitized solar cells: A comparative study with different dyes, mordants and construction parameters," Results in Physics. 12 (2018) 2026–2037.

DOI: 10.1016/j.rinp.2019.01.096

Google Scholar

[33] J. Karthikeyan, C. C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, Plasma spray synthesis of nanomaterial powders and deposits, Material Science & Engineering A. 238 (1997) 275–286.

DOI: 10.1016/s0921-5093(96)10568-2

Google Scholar