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Abstract 
Background: Vaccination is an effective and alternative means of 
disease prevention, however, it cannot be conducted on the offspring 
of fish.  For this process to take place, the transfer of maternal 
immunity must be implemented. This study aims to determine the 
effectiveness of transferring immunity from the broodstock to the 
offspring using a polyvalent vaccine against Aeromonas hydrophila, S
treptococcus agalactiae, and Pseudomonas fluorescens in Nile tilapia, 
Oreochromis niloticus.  
Methods: Nile tilapia broodstock, with an average weight of 203g 
(±SD 23 g) was injected with a vaccine used as a treatment. Example 
include A. hydrophila monovalent (MA), S. agalactiae monovalent (MS), 
P. fluorescens monovalent (MP), A. hydrophila and S. agalactiae bivalent 
(BAS), A. hydrophila and P. fluorescens bivalent (BAP), P. fluorescens and 
S. agalactiae bivalent (BPS), and A. hydrophila, S. agalactiae, and P. 
fluorescens polyvalent vaccines (PAPS). While the control was fish that 
were injected with a PBS solution. The broodstock’s immune response 
was observed on the 7th, 14th, 21st, and 28th day, while the immune 
response and challenge test on the offspring was conducted on the 10
th, 20th, 30th, and 40th day during the post-hatching period. 
Result: The application of PAPS in broodstock could significantly 
induce the best immune response and immunity to multiple diseases 
compared to other treatments. The RPS of the PAPS was also higher 
than the other types of vaccines. This showed that the transfer of 
immunity from the broodstock to the Nile tilapia offspring could 
protect it against bacterial diseases such as A. hydrophila, S. agalactiae, 
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and P. fluorescens. 
Conclusion: The application of PAPS A. hydrophila, S. agalactiae, P. 
fluorescens vaccines increased the broodstock’s immune response and 
it was transferred to their offsprings. They were able to produce 
tilapia seeds that are immune to diseases caused by A. hydrophila, S. 
agalactiae, and P. fluorescens.

Keywords 
Aeromonas hydrophila, bivalent vaccine, monovalent vaccine, 
Pseudomonas fluorescens, Streptococcus agalactiae.
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           Amendments from Version 2
In the 2nd revision, there are several sentence improvements 
(rephrase). In the research methodology section, there was a 
revision of the writing of pool dimensions and an explanation 
of the vaccine production method. In the blood collection, a 
revision was carried out, where the blood collection became 
the Caudal Vein in the broodstock, the revision of the number 
of seeds that were ground was 5 individuals/unit, the revision 
of the effendor used, and the centrifugation time was 5 mL and 
5 minutes respectively. In the agglutination test, it was clarified 
that the addition of antigen volume was 25 µL in the control 
and vaccine treatment, and in the challenge test the seeds were 
immersed with pathogenic bacteria for 24 hours. In the results of 
the study, there was an improvement in Figure 1. Meanwhile, in 
the discussion, there was an additional explanation that offspring 
from unvaccinated broodstocks had native immunity, but all 
parameters of the immune response were very low compared 
to offspring from vaccinated brood stocks. It was also explained 
that the immune response of offspring with high maternal 
immunity compared to controls lasted until the 30th day.

Any further responses from the reviewers can be found at 
the end of the article

REVISED

Introduction
Tilapia was originally considered to be more resistant to  
bacterial, parasitic, fungus, and viral diseases than other  
species of cultivated fish. However, they are found to be  
susceptible to bacterial and parasitic diseases1–3, particularly  
during the offspring phase4. Globally, the control of bacterial  
disease mostly uses antibiotics that are proven not environ-
mentally friendly5–7. Some common diseases of tilapia found 
in several Southeast Asian countries including Indonesia are  
Streptococcus agalactiae, Aeromonas hydrophila, Edwardsiella  
ictaluri, Flavobacterium columnaris, and Pseudomonas fluo-
rescens infections8–10. In addition to the bacterial disease, a 
new disease has emerged called Tilapia Lake Virus (TiLV)  
disease whose specific host is tilapia, causing disease outbreaks 
with high mortality rates in several Southeast Asian countries  
such as Thailand11 and Malaysia12.

Among the various methods of disease control, vaccination  
is one of the most effective ways, which is commonly used5,13–16. 
The administration of vaccines is meant to produce antibodies  
that could improve the immunity of tilapia3,5. Unfortunately,  
they could not be administered to the offspring of fish 
because the organs that form the immune response are not 
yet fully developed, therefore they are unable to produce  
antibodies7,13–17. Tilapia fry was not able to produce their own 
immune system at the age of less than 21 days18, Immune  
systems of Xenopus laevis develop within 2 weeks of age19,  
while Indian major carp develop within 3 weeks of age20.

An effective solution to the aforementioned issue is the appli-
cation of maternal immunity transfer. This is the transfer of 
immunity from broodstock to offspring, by which immu-
noglobulin (IgM type) are transferred through eggs19,21,22.  
Maternal immunity has been shown to improve the fish  

offspring’s immunity against pathogens in the early phases  
of their lives23–26.

This process is usually carried out using monovalent  
vaccines27–30. However, a polyvalent vaccine would be more  
effective because it could control multiple diseases3,31,32 espe-
cially using a formalin-killed vaccine with low production  
cost compared to other types of vaccines3. Though the  
effectiveness has been known, the application of polyvalent  
vaccines to confer maternal immunity in offspring has not 
been extensively investigated, particularly in Nile tilapia  
(O. niloticus).

The transfer of maternal immunity using polyvalent vaccine  
for S. agalactiae, Lactococcus garvieae, and Enterococcus fae-
calis has been studied by Abu-elala et al.33, and three vaccine  
strains for S. agalactiae by Nurani et al.34. The types of bac-
terial diseases studied in the aforementioned studies are very  
limited even though Nile tilapia often suffer from them 
in fish farms and hatcheries35. Besides being infected by  
S. agalactiae29,34–36, Nile tilapia are often infected by  
A. hydrophila9,35,37 and P. fluorescens37,38 leading to high mor-
tality, including in Indonesia. Therefore, this study aimed to  
examine maternal immunity transfer using the polyvalent vaccine  
for S. agalactiae, A. hydrophila, and P. fluorescens (PAPS).  
It was expected that the broodstock could pass their immu-
nity to their offspring, making them resistant to the three dis-
eases (A. hydrophila, S. agalactiae, and P. fluorescens bacteria),  
and also the production of tilapia offspring could also  
be increased. Furthermore, this study aimed to determine the 
effectiveness of the transfer of immunity induced by PAPS  
against A. hydrophila, S. agalactiae, and P. fluorescens  
from the Nile tilapia (O. niloticus) broodstock to their offspring 
and the protection against S. agalactiae, A. hydrophila, and  
P. fluorescens infections.

Methods
Experimental animal
Nile tilapia broodstock, obtained from the Ompo Inland  
Hatchery, Soppeng, Indonesia, with an average weight 
of 203g (±SD 23 g) were used as experimental animal. 
They were kept in spawning ponds (25X30X1.2 LxWxD) 
and fed ad libitum with pellets that have a protein content  
of 30% in the mornings and afternoons. Also, 25% of the 
water was replaced daily. One week after the fish spawned, 
they were harvested and a large number of Nile tilapia  
broodstock at gonad developmental stage 2 were obtained.

Vaccine production
Pure isolates of the A. hydrophila, S. agalactiae, and  
P. fluorescens bacteria were obtained from the Research and 
Development of Fish Disease Control Installation, Ministry  
of Marine Affairs and Fisheries, Depok, Indonesia. Vaccine  
production was carried out by harvesting bacteria aged  
24 hours, which were cultured on TSA media. The yields 
were then put into 100 mL of PBS with a bacterial density of 
1010 cfu/mL measured by the McFarland method. Further, it 
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was killed with formalin according to the results of Amrullah  
et al.39, S. agalactiae and P. fluorescens were inactivated in 
1% formalin, while A. hydrophila was inactivated with 0.6%39.  
Later, stirred and incubated for 24 hours at 4°C. After 24 hours  
of incubation, a vaccine safety test was carried out using the 
sterilization method. Finally, the vaccine was diluted at a  
dose of 107 cfu/mL and was ready to be used for the vaccination  
of tilapia broodstock.

Vaccine treatments and administration
The vaccine treatments consist of (1) a monovalent vaccine 
against A. hydrophila (MA), (2) a monovalent vaccine against  
P. fluorescens (MP), (3) a monovalent vaccine against  
S. agalactiae (MS), (4) a bivalent vaccine against A. hydrophila,  
P. fluorescens and (BAP), (5) a bivalent vaccine against  
A. hydrophila and S. agalactiae (BAS), (6) a bivalent vaccine 
against P. fluorescens and S. agalactiae (BPS), (7) a polyvalent  
vaccine against A. hydrophila, P. fluorescens and S. aga-
lactiae (PAPS), and (8) the control, fish injected with PBS  
solution. However, only the female broodstock was vaccinated.

The vaccination method used was intramuscular (i.m.)40,41 by  
injecting between the first and second scales of the dor-
sal fin and was administered at a dose of 0.4 mL/kg of fish  
(±0.08 mL/fish). After the fish were vaccinated, a booster  
with the same dose as the initial vaccination was later  
administered on the 7th day. The fish were anesthetized  
using MS-222 (Sigma) before injection.

The gonad developmental stage 2 fish post-vaccination 
were reared using 3×3 m cages and installed in dirt ponds  
25×30×1.2 (L×W×D). Furthermore, 20 broodstock were 
reared per cage, consisting of 15 females and 5 males. The fish  
were fed with pellets at a dose of 4%/day in the morning, at 
midday, and in the afternoon. The water was replaced daily  
at a rate of 5%/day. The fish would spawn after being reared  
for approximately 4 weeks.

Broodstock and larvae immune response
Following vaccinations, the fish’s immune response was  
observed on the 7th, 14th, 21st, and 28th day by collecting  
caudal vein blood samples. The immune response parameters 
were the antibody titer using the direct agglutination method42,  
total leukocyte9,34,43, phagocytic44,45 and lysozyme activities27,34,45,46.

Random blood sampling from the offspring was conducted 
on each treatment group on the 10th, 20th, 30th, and 40th day  
post-hatching period. Serum was collected by grinding  
5 offspring in effendorf tube for 5 µL with PBS-tween 
at a ratio of 4:1. It was then centrifuged at 6000 rpm.  
Furthermore, the serum in the second layer of the centrifugation  
result was harvested and stored at 47°C for 30 minutes to  
inactivate the complements47. It was then stored for agglutina-
tion titer and lysozyme activity. The direct agglutination test  
on both broodstocks and offspring was carried out by adding 25 
µL of whole-cell antigen48 of A. hydrophila, P. fluorescens, and  
S. agalactiae (107 cfu/mL) bacteria into the well, starting from  
the 1st well to the 12th well. It was found that the last well 
showed an agglutination reaction. The agglutination test 

used 3 types of bacteria at once; A. hydrophila, S. agalactiae,  
P. fluorescens

Challenge procedures
The offspring challenge test was conducted on the 10, 20, 30,  
and 40 days old during the post-hatching period. It was  
carried out by dividing the fish into 7 groups based on the  
type of vaccine administered plus one unvaccinated. Challenge  
tests on all treatments were carried out using three types  
of pathogenic bacteria; A. hydrophila, S. agalactiae, and  
P. fluorescens. This test was carried out by placing 20 off-
springs into containers containing 4 liters of water and then 
they were immersed for 24 h in water containing pathogenic 
bacteria at a dose of 2.1×108 cfu/mL according to their rela-
tive treatments, each conducted triplicate. To observe the 
effectiveness of the vaccine, the relative percentage survival  
(RPS) was calculated49,50 on the 14th day post-challenge test.

Data analysis
The data for the specific and non-specific immune response 
and RPS were analyzed statistically and with Duncan’s test  
(IBM SPSS Statistic 21; Chicago, IL, USA).

Results
Broodstock total leukocyte dan phagocytic activity  
post-vaccination
In general, the different types of vaccines at each period  
of post-vaccination had a significant effect (P<0.05) on the 
broodstock’s total leukocyte (Figure 1), and phagocytic activity  
(Figure 2). The follow-up test showed that the fish vaccinated 
with PAPS had the highest total leukocyte (7.56–10.70×106  
cell/mm3) and phagocytic activity (8.33–19.33%), followed 
by those vaccinated with bivalent and monovalent vaccines, 
while the lowest was found in control (total leukocyte was  
7.40–7.86×106 cell/mm3, phagocytic activity was 9.00–9.33%).

Broodstock and offspring agglutination titers
The broodstock’s antibody (Table 1) increased, especially  
after the booster, except in the unvaccinated fish. After the peak, 
the broodstock’s immune response remained high up to day  
28 even though there was a tendency for it to decrease. All 
the types of vaccines at each point of time had a significant  
effect (P<0.05) on the agglutination titer in the broodstock.  
The Duncan’s follow-up test showed that the vaccinated  
broodstock had a higher agglutination titer than the unvacci-
nated fish. Also, the highest significant value was found in the  
vaccinated fish with PAPS (1.67–6.67), followed by those  
vaccinated with the bivalent and monovalent vaccines, while 
the lowest was in the control (1.33–1.67). Offspring from 
unvaccinated broodstocks have native immunity, hence in 
the agglutination test occurs agglutination, but it is very 
low and does not show an increase, and has not been able  
to control infections.

Based on the effect of the vaccine on the broodstock’s  
immune response, the agglutination titer in the offspring from 
the vaccinated broodstock at ages 10, 20, 30, and 40 days  
was higher than unvaccinated (P<0.05). The follow-up test  
showed that PAPS was more effective in increasing the  
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Figure 2. The phagocytic activity in the tilapia broodstock after being vaccinated with the various types of vaccines (mean±SE). 
M: monovalent, B: Bivalent, P: Polyvalent vaccine, A: A. hydrophila, S: S. agalactiae, P: P. fluorescens. Values with different superscripts a,b 
indicate that their corresponding means are significantly different (P<0.05) according to one-way ANOVA followed by Duncan’s test.

Figure 1. Total leukocyte of tilapia broodstock after the vaccination with various types of vaccines (mean±SE). M: monovalent, 
B: Bivalent, P: Polyvalent vaccine, A: A. hydrophila, S: S. agalactiae, P: P. fluorescens. Values with different superscripts a,b indicate that their 
corresponding means are significantly different (P<0.05) according to one-way ANOVA followed by Duncan’s test. 

agglutination titer in the offspring (6.33–3.00) than the bivalent  
and monovalent vaccines. The results showed that the  
administration of vaccines in tilapia broodstock had a  
significant effect on the maternal immunity transfer to the  
offsprings that were up to 30 days old (Table 2).

Broodstock and offspring lysozyme activity
The lysozyme activity of broodstock vaccinated with PAPS  
(29.87–103.08 U/mL) was higher than other vaccines, and the  
lowest was in broodstock that was not vaccinated (27.65–33.89  
U/mL) (P<0.05) (Figure 3). Generally, the offspring from 
the broodstock vaccinated with PAPS had a higher lysozyme  
activity (77.81–43.11 U/mL) than those of other treatments  
(P<0.05) up to the 30th day, the lowest was in the control  

(20.29–20.24 U/mL) The results showed that the application 
of PAPS in tilapia broodstock could increase lysozyme activity  
transferred to the offsprings (Figure 4).

RPS of offspring post-challenge
Offsprings that were 10, 20, 30, and 40 days old from the  
vaccinated broodstock had higher RPS than those from the  
unvaccinated broodstock after being challenged with bacteria.  
The offsprings from the broodstock that were vaccinated  
with PAPS had the highest RPS when challenged with 3  
bacteria simultaneously (a combination between A. hydrophila, 
S. agalactiae, and P. fluorescens) (Table 3) up to day 30.  
The RPS of the offspring vaccinated with PAPS were 86,11%  
(10 days old), 78,95% (20 days old) and  56,41% (30 days 
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Table 1. The agglutination titer in Nile tilapia broodstock after being 
vaccinated with various types of vaccines (mean±SE). M: monovalent, B: Bivalent, 
P: Polyvalent vaccine, A: A. hydrophila, S: S. agalactiae, P: P. fluorescens. Values with 
different superscripts a,b indicate that their corresponding means are significantly 
different (P<0.05) according to one-way ANOVA followed by Duncan’s test.

Type of vaccine Day after vaccinated (day)

0 7 14 21 28

MA 1.67±0.33a 2.00±0.00a 3.33±0.33a 3.67±0.3bc 3.67±0.33bc

MP 1.67±0.33a 2.67±0.33a 3.67±0.33a 3.33±0.33bc 3.33±0.33b

MS 1.33±0.33a 2.33±0.33a 3.33±0.33a 3.00±0.00b 3.33±0.33b

BAP 2.00±0.58a 2.33±0.33a 4.33±0.33ab 4.33±0.33c 4.67±0.33bc

BAS 1.67±0.33a 2.33±0.33a 4.33±0.33ab 4.33±0.33c 4.33±0.88bc

BPS 1.67±0.67a 2.33±0.33a 4.33±0.33ab 4.33±0.33c 5.00±0.58c

PAPS 1.67±0.33a 3.67±0.33b 5.33±0.33b 6.67±0.33d 6.67±0.33d

Control 1.67±0.33a 1.67±0.33a 1.33±0.33a 1.33±0.33a 1.67±0.33a

Table 2. The agglutination titer of tilapia offspring from maternal 
immunity produced by various types of vaccines at the ages of  
10, 20, 30 and 40 days post-hatching (mean±SE). M: monovalent,  
B: Bivalent, P: Polyvalent vaccine, A: A. hydrophila, S: S. agalactiae,  
P: P. fluorescens. Values with different superscripts a,b indicate that their 
corresponding means are significantly different (P<0.05) according to 
one-way ANOVA followed by Duncan’s test.

Type of vaccine Day post-hatching (day)

10 20 30 40

MA 4.00±0.58ab 3.67±0.33bc 1.67±0.33a 1.33±0.33a

MP 4.00±0.00ab 3.67±0.33bc 1.67±0.33a 1.33±0.33a

MS 3.67±0.33b 3.33±0.33b 2.33±0.33ab 1.33±0.33a

BAP 4.67±0.33ab 4.67±0.33c 2.33±0.33ab 1.67±0.33a

BAS 5.00±0.58c 4.33±0.33bc 2.33±0.33ab 1.67±0.33a

BPS 4.33±0.33ab 4.33±0.33bc 2.33±0.33ab 1.33±0.33a

PAPS 6.33±0.33d 5.67±0.33d 3.00±0.33b 1.67±0.33a

Control 1.67±0.33a 1.67±0.33a 1.67±0.33a 1.33±0.33a

old). The immune response generated through maternal immu-
nity only lasts up to 30 days and in the end, the immune  
response will be formed by the body of the offspring itself.

Discussion
Efforts to produce seeds that are immune to several diseases 
were the best alternative to increasing Nile tilapia production.  
Furthermore, PAPSs for A. hydrophila, S. agalactiae, and  
P. fluorescens were able to improve the broodstock’s immune 
response which was then transferred to the offspring.  
This process was carried out in order to produce offspring  
that possess both lysozyme and antibodies and a high survival 

rate post-challenge test using pathogenic bacteria. This was  
better than the other treatments that made use of the bivalent  
and monovalent vaccines.

The results from the observation of the broodstock for 28 days 
showed that the total leukocyte (Figure 1), phagocytic (Figure 2),  
antibody titer (Table 1), and lysozyme activity (Figure 3),  
started to increase in week two post-vaccination. The  
broodstock vaccinated with PAPS showed a higher increase 
in the immune response compared to the others that were  
vaccinated with the bivalent, monovalent vaccines, and was 
the lowest in the unvaccinated broodstock28,30,33,34,51. This 
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Figure 3. The lysozyme activity in the tilapia broodstock after being vaccinated with the various types of vaccines (mean±SE). 
M: monovalent, B: Bivalent, P: Polyvalent vaccine, A: A. hydrophila, S: S. agalactiae, P: P. fluorescens. Values with different superscripts a,b 
indicate that their corresponding means are significantly different (P<0.05) according to one-way ANOVA followed by Duncan’s test.

showed that PAPS could increase the Nile tilapia broodstock’s  
immune response better than the other treatments.

The offspring produced from the broodstock that were  
vaccinated with PAPS had the highest antibodies (Table 2) and  
lysozyme activity (Figure 4) up to the 30th day post-hatching  
period and was the lowest in the offsprings from the unvacci-
nated broodstock (P<0.05). This demonstrated that their strong 
immune response was transferred to their offsprings27–29,33,34,52  
through the egg yolk53.

The results from the challenge test using pathogenic bacteria  
(Table 3) showed that the offsprings that were produced 
using PAPS had a higher RPS compared to those from the  
offsprings produced from broodstocks that were treated  
using the monovalent and bivalent vaccines (P<0.05). This  
further showed that the vaccine treatment had adequately  
protected the fish from bacterial diseases with an RPS that was 
greater than 60% up to the 30th day post-hatching period49.  
RPS of the offspring vaccinated with formalin-inactivated  
vaccine in this study was higher at same time and lasted  

Figure 4. The lysozyme activity of tilapia offspring from maternal immunity produced by various types of vaccines at the ages 
of 10, 20, 30 and 40 days post-hatching (mean±SE). M: monovalent, B: Bivalent, P: Polyvalent vaccine, A: A. hydrophila, S: S. agalactiae,  
P: P. fluorescens. Values with different superscripts a,b indicate that their corresponding means are significantly different (P<0.05) according 
to one-way ANOVA followed by Duncan’s test.
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longer than the findings of Nurani et al.34 on days 10 and 20, 
closely similar to the Sukenda et al.18 and Pasaribu et al.54, 
but higher on day 20. The high RPS in the offspring during the  
challenge test using pathogenic bacteria in PAPS treatment  
was due to the broodstock’s high number of leukocytes,  
phagocytic activity, the amount of antibody, and lysozyme  
activity transferred to the offsprings for protection against  
diseases. Meanwhile, in the control (unvaccinated), it only 
relies on immunity transferred naturally from the broodstock,  
whereas in the vaccinated broodstock, the offspring also 
get immunity from the broodstock which is induced by the  
vaccine. The existence of vaccine induction in the broodstocks  
can increase the total leukocytes, phagocytic activity, anti-
bodies, and lysozyme activity of the offspring which are  
higher than the offspring produced from unvaccinated brood-
stocks. Thus, in the challenge test, the immune response 
of the vaccinated offspring is sufficient to control bacterial 
attacks, while the control offspring have not been able to con-
trol bacterial attacks. Compared to the Abu-elala et al.33 study,  
the offspring RPS was higher and could last up to 3 months,  
whereas in this study, the PAPS RPS vaccine was lower  
and only lasted up to days 30. The low RPS of the PAPS vac-
cine can be improved by the use of adjuvants, the use of quality  
tilapia broodstock, proper nutrition in terms of quality and  
quantity, and the application of biosecurity in the hatchery33.

The role of leukocytes which consist of neutrophils,  
lymphocytes, and monocytes, is to infiltrate the infected area 
for rapid protection55, stimulating the production of antibodies  
through the recognition of foreign bodies, including vaccines  
and pathogens during the challenge test in this study. The 
phagocytic activity occurs during phagocytosis, which involves  
antibodies and complements during opsonization. Furthermore,  
the total leukocyte parameter increases in line with other 
immune responses, such as the antibacterial lysozyme, which 
triggers the complement system and phagocytic cells56–58.  
It encourages phagocytosis by activating leukocytes and  
polymorphonuclear macrophages or through opsonization59. The 
high number of leukocytes and a large amount of lysozyme 

in the treatment using PAPS which is similar to an infec-
tion by a pathogen indicated the success of PAPS in trigger-
ing the fish’s immune system when developing an immune  
response.

The offsprings produced by the broodstock that were  
vaccinated with PAPS were protected from infections by  
A. hydrophila, S. agalactiae, and P. fluorescens. However, 
the monovalent vaccines only protected the offsprings from  
one type of bacteria. This is one of the advantages of apply-
ing PAPS. The results of this study revealed that the  
application of PAPS produced broodstock and offspring with 
better immune responses than the bivalent and monovalent  
vaccines. Therefore, the development of a polyvalent vaccine is  
more prudent than that of bivalent or monovalent because of 
its ability to target more than one species of bacteria31,51,52,60–63.  
The use of this type of vaccine caused the fish to respond  
to multiple antigens and form an immune response, thereby 
making it a strategic method in controlling bacterial diseases  
commonly found in culture and breeding environments33,34,52,64. 
Additionally, the application of polyvalent vaccines is more  
practical than the monovalent containing only one type of 
antigen. This showed that PAPS provided the most effec-
tive protection against diseases caused by pathogenic bacteria  
that often affect fishes, and thus is an ideal candidate for  
developing a polyvalent vaccine against bacterial infection.

Conclusion
The results show that the application of the polyvalent  
vaccine against A. hydrophila, S. agalactiae, and P. fluorescens  
increased the antibody, lysozyme, total leukocytes, and  
phagocytic activity in Nile tilapa broodstock which was trans-
ferred to their offsprings, leading to a high RPS during the  
challenge test. Therefore, it is possible to produce seeds 
of Nile tilapia that are immune to diseases caused by  
A. hydrophila, S. agalactiae, and P. fluorescens. This process  
could be carried out through the vaccination of the broodstocks 
using a polyvalent vaccine against A. hydrophila, S. agalactiae,  
and P. fluorescens.

Table 3. The Relative Percentage Survival (RPS) of tilapia offspring 
from maternal immunity produced by various types of vaccines at 
the ages of 10, 20, 30 and 40 days post-hatching. The offspring were 
produced by broodstock vaccinated with various types of vaccines through 
intramuscular (i.m.) injection (mean±SE).

Type of vaccine Day post-hatching (day)

10 20 30 40

MA 66.67±4.81a 55.26±5.26a 41.03±2.56a 14.29±4.96a

MP 61.11±2.78a 50.00±6.96a 41.03±2.56a 14.29±4.96a

MS 63.89±2.78a 52.63±4.56a 43.59±2.56a 17.14±2.86a

BAP 72.22±2.78a 60.53±4.56a 46.15±4.44ab 11.43±7.56a

BAS 69.44±2.78a 60.53±4.56a 46.15±4.44ab 14.29±4.95a

BPS 69.44±7.35a 57.89±6.96a 43.59±2.56a 11.43±2.86a

PAPS 86.11±2.78b 78.95±2.63b 56.41±5.13b 20.00±2.86a
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Data are available under the terms of the Creative Commons  
Zero “No rights reserved” data waiver (CC0 1.0 Public domain 
dedication).
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Please refer to the highlights in the attached pdf. 
 
P3: Intro 
 
Para 1 
 
Streptococcus agalactia, Aeromonas hydrophila, Edwardsiella ictaluri, Flavobacterium columnaris, 
and Pseudomonas fluorescens are the pathogens. Disease refer to the infection, for examples 
Streptococcus agalactiae infection, Aeromonas hydrophila infection. Please revise. Consider 
'Streptococcus agalactiae, Aeromonas hydrophila, Edwardsiella ictaluri, Flavobacterium 
columnaris, and Pseudomonas fluorescens infections'. 
 
Tilapia lake virus is the pathogen, the disease is tilapia lake virus disease.  
 
Para 2 
 
'The offspring of fish' instead of 'their offspring' because 'they' refers to 'vaccines' 
 
Para 4 
 
It isn't applying polyvalent vaccines in offspring through maternal immunity, but 'application of 
polyvalent vaccines to confer maternal immunity in offspring'. Please rephrase. 
 
 
Methods 
 
Para 1, experimental animal 
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What size was the spawning ponds that you managed to replace 25% of water daily? Please 
provide the dimension (LxWxD). 
 
Para 2, vaccine production 
 
The test vaccine. Please provide reasons why S.agalactiae and P. fluorescens were inactivated with 
1% formalin while A.hydrophila inactivated with 0.6%?  
 
P4: Para 1, vaccine treatments and administration 
 
Did you vaccinate both female and male broodstocks, or only female? Please mention. 
Revise 'However, before being injected with the vaccines, they were first anesthetized using MS-
222, Sigma.' 
Consider: The fish were anesthetized using MS-222 (Sigma) prior to injection. 
 
Para 2 
 
25x30x1.2 m (L×W×D) 
 
Para 3 
 
Broodstock and larvae immune response. 
Intramuscular blood samples? Not caudal vein?  
 
Para 4  
 
Instead of 'post-spawning period', 'post-hatching period' will better reflect the offspring size. 
Please revise. 
How many offspring was ground in a tube, and what kind of tube was it? 
Why was there a range of 5-10 minutes centrifugation time? If the samples were centrifuged for 
different lengths of time, would it have affected the parameters later? Please clarify. 
Inactivate the complements or components?  
What type of antigen? Whole-cell antigen? 
 
Para 5: Challenge procedures 
 
How long was the immersion in water containing pathogenic bacteria? 
 
P4 Results 
 
Broodstock total leukocyte dan phagocytic activity post vaccination 
PAPs did not result in highest total leukocyte in different time frames. BAP was highest on day 14. 
 
P5, para 1: Broodstock and offspring agglutination titers 
 
Please provide explanation as to why the unvaccinated fish (control) also show agglutination titer 
(although lower). 
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Para 4, RPS of offspring post-challenge 
 
86.11% (10 days old), 78.95% (20 days old) and 56.41% (30 days old) 
Please provide explanation as to why the offspring of PAPS vaccinated broodstock encountered 
drops of RPS from 10 days old to 30 days old.  
 
P5, Discussion, para 1 
 
Was carried out in order to produce... 
 
P7, Para 1 
 
The statement 'in the control (unvaccinated), there was no transfer of immunity from the mother' 
is not generally true. If the unvaccinated broodstocks have acquired immunity from prior 
infections, the immunity will have been passed on to the offspring as maternal immunity. It is only 
true that the offspring of the unvaccinated broodstocks did not have the vaccine-induced maternal 
immunity.    
 
The statement 'the offspring hasn’t been able to produce their own immune response, so the total 
leukocyte, phagocytic activity, antibody, and low lysozyme activity' is not true. The offspring of the 
unvaccinated broodstocks did show immune response to the bacterial challenge but at the lower 
level compared with vaccinated group.
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The work is clearly and accurately presented. It is interesting research and I hope they can further 
study for farm application. However, the other serious bacteria pathogen is missing. Please add 
more review about Flavobacterium columnare. In addition, the viral pathogen doesn't be 
mentioned. It seems survival rates were quite low after bacterial challenge. Please discuss about 
low survival and how to improve it. 
 
This work, of course, has academic merit. This study was well designed, the details of the methods 
are enough and they could be replicated, and the statistical analysis was appropriate. However, 
please discuss more about the negative control. No challenge test for control groups? All the 
source data underlying the results were available to ensure full reproducibility and the conclusions 
are drawn adequately and supported by the results. However, I just wonder about the TiLV 
problem? Do you plan to produce vaccines? 
 
In addition to the previous comments, enclosed is the manuscript with some additional 
comments. 
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Is the study design appropriate and is the work technically sound?
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If applicable, is the statistical analysis and its interpretation appropriate?
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Are the conclusions drawn adequately supported by the results?
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Summary 
 
The study examined the transfer of vaccine-induced maternal immunity in Nile tilapia, Oreochromis 
niloticus against Aeromonas hydrophila, Streptococcus agalactiae and Pseudomonas fluorescens. The 
protective effects of monovalent, bivalent and polyvalent vaccines were compared. The relative 
percentage survival in immersion challenges, agglutination titers and lysozyme activities indicated 
that the polyvalent vaccine induced significantly better immune response compared with the 
bivalent, monovalent and unvaccinated groups. 
 
Part of the introduction is rather brief. Suggestion for improvement as follows:

Provide more references on vaccination in tilapia. The following two contain some of the 
relevant information 
https://doi.org/10.1002/aah.10099 
https://doi.org/10.1016/j.fsi.2019.04.052 
 

1. 

Until which stage of offspring is the immune system not ready for immune response? 
Juvenile? Please elaborate more. 
 

2. 

What types of Ig are transferable through eggs? Please elaborate. 3. 
 
Part of the method description is rather brief and lacks references. Suggestion for improvements 
as follows:

Provide the reference for the two formalin concentrations used for inactivation of bacteria. 
 

1. 

Mention the site of IM injection and provide the reference. 
 

2. 

Mention the final bacterial concentration (cfu/mL) in the vaccines used at 0.4 mL/ kg. 
 

3. 

Mention the size of the dirt ponds. 
 

4. 

Detail the antigen preparation for direct agglutination test. Was it monovalent, bivalent or 
polyvalent?

5. 

Please see some additional annotations here. 
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