LAPORAN AKHIR PENELITIAN PNBP FMIPA

ANALISIS HUBUNGAN ANTARA KEMAMPUAN MULTIPLE REPRESENTASI DAN LITERASI SAINS CALON GURU IPA BERDASARKAN GAYA BELAJAR

Sitti Rahma Yunus, S.Pd., M.Pd. NIDN. 0017078604 (Ketua) Dr. Muh. Tawil, M.S., M.Pd. NIDN. 0031126388 (Anggota) Dr. Nurhayani H. Muhiddin, M.Si. NIDN. 0031126716 (Anggota)

Dibiayai oleh

DIPA Universitas Negeri Makassar Nomor: SP DIPA-023.17.2.677523/2020, Tanggal 12 Mei 2020. Sesuai Surat Keputusan Rektor Universitas Negeri Makassar Nomor: 366/UN36/HK/2020 tanggal 29 April 2020

> UNIVERSITAS NEGERI MAKASSAR November, 2020

HALAMAN PENGESAHAN

Analisis Hubungan antara Kemampuan Multiple **Judul Penelitian**

Representasi dan Literasi Sains Calon Guru IPA

berdasarkan Gaya belajar

Ketua Peneliti:

: Sitti Rahma Yunus, S.Pd., M.Pd a. Nama Lengkap : 198607172014042001/0017078604 b. NIP/NIDN

: Lektor c. Jabatan Fungsional

: Pendidikan IPA d. Program Studi : 081355457428 e. Nomor HP

f. Alamat surel (e-mail) : sitti.rahma.yunus@unm.ac.id

Anggota Peneliti (1)

: Dr. Muh. Tawil, M.S., M.Pd a. Nama Lengkap

: 196312311989031377/0031126388 b. NIP/NIDN

: Universitas Negeri Makassar c. Perguruan Tinggi

Anggota Peneliti (2)

: Dr. Nurhayani Haji Muhiddin, M.Si a. Nama Lengkap : 196712311993032004/0031126716 b. NIP/NIDN : Universitas Negeri Makassar

c. Perguruan Tinggi : 8 bulan

Lama Penelitian

Biaya Penelitian yang diusulkan : Rp. 20.000.000,00

Jumlah mahasiswa yang dilibatkan : 2 orang

UNM, 9

Sawardi Annas, M.Si., Ph.D.

NIP. 196912311994031110

Makassar, 26 November 2020

Ketua Peneliti,

Sixti Rahma Yunus, S.Pd, M.Pd NIP. 198617072014042001

Menyetujui:

Penelitian dan Pengabdian kepada Masyarakat

Universitas Negeri Makassar

H. Bakhrani A. Rauf, M.T.

RINGKASAN

Judul : Analisis Hubungan Antara Kemampuan Multiple representasi dan literasi sains calon guru IPA berdasarkan gaya belajar

(Sitti Rahma Yunus, Muh. Tawil, Nurhayani H. Muhiddin)

Pengalaman selama mengajar di Prodi pendidikan IPA, salah satu program studi yang mencetak guru IPA, ditemukan bahwa terdapat mahasiswa yang belum bisa menerjemahkan bahasa verbal, dalam hal ini soal dalam bentuk wacana, ke dalam bentuk persamaan matematis. Selain itu, dalam mata kuliah seperti fisika dasar, gelombang, mahasiswa memiliki kemampuan yang masih minim dalam mengaitkan grafik dengan data-data matematis. Fakta tersebut menunjukkan bahwa beberapa mahasiswa belum memiliki multi representasi yang cukup pada suatu fenomena alam.

Kemampuan dalam merepresentasikan suatu fenomena dalam berbagai bentuk baik secara grafik, matematik, diagram, dll merupakan kemampuan *multiple representations (MRs)*. Menurut Leigh (2004) multirepresentasi melibatkan penerjemahan secara berurutan dari masalah fisika yang diberikan dari satu simbol bahasa ke lainnya, dimulai dengan menulis deskripsi masalah secara verbal, kemudian dipindahkan ke bentuk gambar yang disesuaikan dan representasi diagram, dan diakhiri (biasanya) dengan rumus matematis yang dapat digunakan untuk menentukan jawaban menggunakan angkaif.

Untuk dapat menjelaskan berbagai fenomena dalam sains (IPA), mahasiswa harus memiliki literasi sains yang mumpuni. Mengapa demikian, karena jika para calon guru tidak memiliki literasi sains yang cukup akan berdampak pada kualitas anak didik (generasi bangsa) dalam hal penguasaaan sains ke depannya.

Literasi sains peserta didik di Indonesia belum sesuai harapan karena masih di bawah standar. Pada tingkat internasional menurut data PISA (Programme for International Student Assessment) 2009 dalam laporan Student Performance In Reading Mathematics And Science menunjukkan penguasaan sains peserta didik di Indonesia berada pada posisi 60, jauh tertinggal dibanding negara-negara di Asia tenggara antara lain Thailand (49), dan Singapura (4). Berdasarkan hasil survey tersebut skor peserta didik Indonesia pada kemampuan literasi sains masih jauh di bawah skor standar internasional yang ditetapkan oleh lembaga OECD yaitu 500.

Realita rendahnya literasi sains peserta di didik di Indonesia menjadi tantangan berat bagi paca calon guru IPA. Mengapa demikian karena untuk dapat mengajarkan sains dengan baik maka calon pendidik IPA harus memiliki literasi sains yang seharusnya tinggi. Sejauh ini, belum ada penelitian di lingkungan proram studi pendidikan IPA yang mendeskripsikan level literasi sains mahasiswa di prodi

tersebut. Oleh karen aitu perlu dilakukan penelitian yang dapat memberikan gambarkan level litrasi sains dari para calon guru IPA tersebut.

Literasi sains, secara teori, erat kaitannnya dengan kemampuan representasi peserta didik. Jika peserta didik mampu merepresentasikan suatu objek dalam representasi yang berbeda berarti mereka memiliki literasi sains yang cukup. Penelitian yang telah dilakukan sebelumnya adalah melihat hubungan keterampilan berpikir kritis dan literasi sains yang dilakukan oleh Galuh Rahayuni (2016) dan diperoleh hasil bahwa keduanya memiliki korelasi yang sangat kuat.

Kemampuan representasi selain melihatkan pengetahuan juga melibatkan penggunaan indra yang terkait dengan gaya belajar oleh calon guru IPA yang oleh kerena itu dalam rencana penelitian ini akan calon penelitian akan menganalisis hubungan kemampuan representasi dan literasi sains calon guru IPA berdasarkan gaya belajar.

Jenis penelitian yang digunakan adalah penelitian survey yang bersifat korelasional yang melibatkan dua variabel yaitu variabel bebas (*independent variable*) dan variabel tak bebas (*dependent variable*). Variabel bebas penelitian ini yakni (1) Kemampuan Multiple Representasi sedangkan variabel tak bebasnya yakni literasi sains.

Populasi dalam penelitian ini adalah seluruh mahasiswa S-1 Prodi Pendidikan IPA FMIPA UNM Makassar yang mengikuti kuliah fluida pada tahun akademik 2019/2020. Sedang pengambilan sampel dalam penelitian ini menggunakan *puposive random sampling*.

Untuk pengambilan data maka instrumen penelitian yang digunakan adalah instrumen tes Kemampuan Multiple Representasi dan Tes Literasi Sains. Selanjutnya data yang diperoleh akan dianalisis menggunakan analisis statististik deskriptif dan inferensial. Analisisis dtatistik deskriptif digunakan untuk menggambarkan profil kemampuan multiple representasi dan literasi sains sedangkan statistik inferensial digunakan untuk melihat korelasi antara kedua variabel tersebut.

Dari hasil analisis statistis deskriptif diperoleh informasi bahwa Nilai Rata-rata tertinggi dari representasi grafik dimiliki oleh mahasiswa dengan gaya belajar visual pada kaegoti sedang. Selanjutnya nilai tertinggi dari kemampuan representasi gambar, simbol dan verbal dimiliki oleh gaya belajar kinestetik dengan kategori, medium, tinggi dan tinggi. Berdasarkan hasil ini disimpulkan bahwa Kemampuan Multiple representasi oleh Calon guru IPA dengan gaya belajar kinestetik lebih baik dibandingkan gaya belajar lainnya.

Selanjutnya Rata-rata Literasi sains calon guru IPA untuk ketiga gaya belajar memiliki nilai yang hampir sama dengan kategori masing-masing sedang. Nilai rata-rata Literasi Sains tertinggi untuk tema/materi yaitu tema fase bulan pada kategori tinggi dan rendah pada materi pengolahan air.

Dari hasil analsis uji korelasi ditemukan bahwa terdapat hubungan kemampuan multiple Representasi dengan Literasi sains dengan level hubungan yang sangat lemah. Selanjutnya pada kelompok gaya belajar visual kedua variabel menujukkan korelasi negatif yang sangat lemah. Selanjutnya, Pada kelompok gaya belajar auditori, hasil menunjukkan adanya korelasi yang berada pada kategori lemah. Yang terakhir, hasil uji korelasi kelompok dengan gaya belajar kinesteti menujukkan korelasi pad akategori sedang atau cukup.

PRAKATA

Alhamdulillah, Puji syukur kami panjatkan kepada Allah Subhanahu wa Ta'ala karena atas ijin_Nya, laporan pengabdian ini dapat kami selesaikan. Laporan ini berisi tentang laporan kegiatan penelitian yang telah kami lakukan.

Penelitian ini dilakukan dengan melibatkan mahasiswa calon guru IPA semster 4 angkatan 2018 sebagai sampel penelitian. Walaupun penelitian ini berlangsung pada masa COVID 19, mahasiswa tetap kooperatif dalam menegerjakan tes kemampuan representasi dan literasi sains serta tes diagnostik gaya belajar. Semua tes diberikan dalam bentuk daring yakni bentuk google form dan file melalui WAG.

Kepada pihak yang terkait utamanya pihak Universitas Negeri makassar, kami tim peneliti mengucapkan terimakasih atas bantuan dana sehingga kegiatan ini bisa terlaksana dengan baik. Terimaksih juga kami haturkan kepada semua pihak yang terlibat khususnya pihak Program studi Pendidikan IPA yang telah memberikan kesempatan tim peneliti untuk meneliti di Prodi tersebut.

Makassar, 29 Nopember 2020

Tim Peneliti

DAFTAR ISI

HALAMAN SAMPUL i
HALAMAN PENGESAHANii
RINGKASANiii
PRAKATAvi
DAFTAR ISIvii
DAFTAR TABELviii
DAFTAR GAMBARix
DAFTAR LAMPIRANx
BAB I PENDAHULUAN
BAB II TINJAUAN PUSTAKA6
BAB III METODE PENELITIAN
BAB IV HASIL DAN PEMBAHASAN
BAB V KESIMPULAN DAN SARAN
DAFTAR PUSTAKA
LAMPIRAN-LAMPIRAN 34

DAFTAR TABEL

Tabel 2.1 Indikator Kemampuan Representasi Matematis	8
Tabel 3.1 Penafsiran Nilai r _{xy}	14
Tabel 4.1 Hasil Tes Diagnostik Gaya Belajar	15
Tabel 4.2 Nilai Rata-rata Kemampuan Multiple Representasi	16
Tabel 4.3 Dua soal yang banyak Peserta Menjawab Salah	18
Tabel 4.4 Hasil Statistik Literasi Sains Berdasarkan gaya Belajar	19
Tabel 4.5 Nilai Rata-rata Literasi Sains Per Tema	`19
Tabel 4.6 Hasil Analisis Uji Normalitas	20
Tabel 4.7 Hasil Analisis Uji Korelasi	20
Tabel 4.8 Hasil Uji Normalitas Kelompok Gaya Belajar Visual	21
Tabel 4.9 Hasil Analisis Korelasi Kelompok Gaya Belajar Visual	21
Tabel 4.10 Hasil Uji Normalitas Kelompok Gaya Belajar Auditori	22
Tabel 4.11 Uji Korelasi Kelompok Gaya Belajar Auditori	22
Tabel 4.12 Hasil uji Normalitas Kelompok gaya Belajar Kinestetik	23
Tabel 4.13 Uii Korelasi Kelompok Gava Belajar Kinestetik	23

DAFTAR GAMBAR

Gambar 3.1 Konstelasi Hubungan Antara Variabel	13
Gambar 4.1 (a) Soal no 2 dan persentase jawaban, (b) Soal no 5 dengan	
persentase jawaban	. 16

DAFTAR LAMPIRAN

LAMPIRAN 1 Surat Perjanjian Pelaksanaan Penelitian	34
LAMPIRAN 2 Surat Ijin Penelitian	39
LAMPIRAN 3 Surat Keterangan Penelitan	40
LAMPIRAN 4 Instrumen Penelitian	41
LAMPIRAN 5 Data Hasil Penelitian	74
LAMPIRAN 6 Analisis Data	76
LAMPIRAN 7 Biodata Pengusul	84
LAMPIRAN 8 Luaran Penelitian	105
LAMPIRAN 9 Surat Pernyataan Tanggung Jawab Belanja	110

BABI

PENDAHULUAN

A. Latar Belakang

Ilmu pengetahuan alam (IPA) merupakan cara mencari tentang alam secara sistematis, sehingga bukan hanya penguasaan kumpulan pengetahuan berupa fakta, konsep, atau prinsip saja tetapi juga merupakan suatu proses penemuan. Sangat penting bagi seorang calon Guru IPA untuk memahami setiap fakta, konsep, dan prinsip serta proses penemuan di setiap materi dalam cakupan IPA. Hal tersebut menjadi penting karena sebagai calon guru, mereka harus memiliki bekal yang cukup untuk menjadi *real teacher* di lapangan. Mereka adalah calon pendidik (guru) untuk generasi masa depan bangsa ini.

Kualitas pendidikan sangat bergantung pada kualitas guru karena guru merupakan faktor terpenting dalam meningkatkan kualitas pendidikan. Penelitian menunjukkan bahwa pengetahuan dan kemampuan guru memiliki dampak yang signifikan pada kinerja akademis anak didiknya. Seperti catatan dalam laporan McKinsey yang menyatakan bahwa, "Kualitas sistem pendidikan tidak mungkin melampaui kualitas gurunya" (tim penyusun, 2010). Penelitian hampir secara universal memperlihatkan pentingnya kualitas guru. Penelitian tentang TVASS (Sistem Penilaian Bernilai Tambah di Tennessee), misalnya, memperkirakan bahwa lebih dari 50 persen dari kesenjangan pencapaian selama tiga tahun antara dua kelompok berusia antara 8 dan 11 tahun disebabkan karena kelompok yang satu diajar oleh guru berkemampuan tinggi (20 persen tertinggi di antara tenaga pendidik) sementara kelompok yang lain diajar oleh guru berkemampuan rendah (20 persen terbawah). Hasilnya, pada usia 11 tahun, kelompok yang diajar guru berkemampuan tinggi meraih nilai di persentil ke-93, sementara kelompok yang diajar guru berkemampuan rendah meraih nilai di persentil ke-37 (tim penyususn, 2011). Dengan demikian dapat dilihat bagaimana besarnya peran guru pada kualitas

pendidikan. Berdasarkan alasan tersebut, maka sangat penting untu menghasilkan calon guru yang berkualitas.

Pengalaman selama mengajar di Prodi pendidikan IPA, salah satu program studi yang mencetak guru IPA, ditemukan bahwa terdapat mahasiswa yang belum bisa menerjemahkan bahasa verbal, dalam hal ini soal dalam bentuk wacana, ke dalam bentuk persamaan matematis. Selain itu, dalam mata kuliah seperti fisika dasar, gelombang, mahasiswa memiliki kemampuan yang masih minim dalam mengaitkan grafik dengan data-data matematis. Selain itu, mereka juga belum bisa menerjemahkan grafik tersebut dalam bahasa verbal. Sebagai contoh; untuk grafik hubungan antara simpangan dengan periode, mahasiswa masih belum dapat menentukan periode dari suatu gelombang sinusoidal ataupun longitudinal berdasarkan grafik yang disajikan pada soal. Contoh lain misalnya, mahasiswa hanya mengetahui simpangan yang disimbolkan dengan Y tetapi belum bisa menggambarkan simpangan tersebut dalam sebuah grafik. Fakta tersebut menunjukkan bahwa beberapa mahasiswa belum memiliki multi representasi yang cukup pada suatu fenomena alam.

Kemampuan dalam merepresentasikan suatu fenomena dalam berbagai bentuk baik secara grafik, matematik, diagram, dll merupakan kemampuan *multiple representations (MRs)*. Menurut Leigh (2004) multirepresentasi melibatkan penerjemahan secara berurutan dari masalah fisika yang diberikan dari satu simbol bahasa ke lainnya, dimulai dengan menulis deskripsi masalah secara verbal, kemudian dipindahkan ke bentuk gambar yang disesuaikan dan representasi diagram, dan diakhiri (biasanya) dengan rumus matematis yang dapat digunakan untuk menentukan jawaban menggunakan angka. Dengan demikian, sangat penting bagi seorang calon guru IPA untuk memiliki kemampuan representasi yang baik sehingga dapat memahami dan menyelesaikan berbagai soal-soal IPA. Selain itu adanya kemampuan representasi yang memadai ditandai dengan mahasiswa dapat menjelaskan setiap fenomena dalam IPA secara komprehensif.

Untuk dapat menjelaskan berbagai fenomena dalam sains (IPA), mahasiswa harus memiliki literasi sains yang mumpuni. Mengapa demikian, karena jika para

calon guru tidak memiliki literasi sains yang cukup akan berdampak pada kualitas anak didik (generasi bangsa) dalam hal penguasaaan sains ke depannya.

Literasi sains peserta didik di Indonesia belum sesuai harapan karena masih di bawah standar. Pada tingkat internasional menurut data PISA (Programme for International Student Assessment) 2009 dalam laporan Student Performance In Reading Mathematics And Science menunjukkan penguasaan sains peserta didik di Indonesia berada pada posisi 60, jauh tertinggal dibanding negara-negara di Asia tenggara antara lain Thailand (49), dan Singapura (4). Selanjutnya, informasi dari The Organization for Economic Co-operation and Development (OECD) menyebutkan bahwa peringkat literasi sains Indonesia di PISA pada tahun 2000 yaitu ke-38 dari 41 negara dengan perolehan skor 393. Pada tahun 2003 yaitu ke-38 dari 40 negara dengan perolehan skor 395. Pada tahun 2006 yaitu ke-50 dari 57 negara dengan perolehan skor 393. Pada tahun 2009 yaitu ke-60 dari 65 dengan perolehan skor 383. Pada tahun 2012 yaitu ke-64 dari total 65 negara dengan perolehan nilai saat itu yaitu 375 (Asyhari & Hartati, 2015). Selanjutnya, pada tahun 2015 Indonesia berada pada peringkat ke-64 dari 72 negara yang ikut serta, dengan perolehan skor yaitu 403 (Yuliati, 2017). Berdasarkan hasil survey tersebut skor peserta didik Indonesia pada kemampuan literasi sains masih jauh di bawah skor standar internasional yang ditetapkan oleh lembaga OECD yaitu 500.

Realita rendahnya literasi sains peserta di didik di Indonesia menjadi tantangan berat bagi paca calon guru IPA. Mengapa demikian karena untuk dapat mengajarkan sains dengan baik maka calon pendidik IPA harus memiliki literasi sains yang seharusnya tinggi. Sejauh ini, belum ada penelitian di lingkungan proram studi pendidikan IPA yang mendeskripsikan level literasi sains mahasiswa di prodi tersebut. Oleh karen aitu perlu dilakukan penelitian yang dapat memberikan gambarkan level litrasi sains dari para calon guru IPA tersebut.

Literasi sains, secara teori, erat kaitannnya dengan kemampuan representasi peserta didik. Jika peserta didik mampu merepresentasikan suatu objek dalam representasi yang berbeda berarti mereka memiliki literasi sains yang cukup. Menurut Waldrip (2006) bahwa terdapat adanya pengakuan bahwa pembelajaran

sains di sekolah melingkupi pemahaman dan keterkaitan bahasa, visual dan bentuk matematika untuk mengembangkan pengetahuan konsep dan proses IPA.Untuk melihat relevansi kedua variabel tersebut, perlu dilakukan penelitian. Penelitian yang telah dilakukan sebelumnya adalah melihat hubungan keterampilan berpikir kritis dan literasi sains yang dilakukan oleh Galuh Rahayuni (2016) dan diperoleh hasil bahwa keduanya memiliki korelasi yang sangat kuat.

Kemampuan representasi selain melibatkan pengetahuan juga melibatkan penggunaan indra yang terkait dengan gaya belajar oleh calon guru IPA yang oleh kerena itu dalam rencana penelitian ini akan calon penelitian akan menganalisis hubungan kemampuan representasi dan literasi sains calon guru IPA berdasarkan gaya belajar.

B. Rumusan Masalah

Berdasarkan latar belakang tersebut, maka rumusan masalah dalam penelitian ini adalah sebagai berikut:

- 1. Bagaimana deskripsi kemampuan multiple representasi calon guru IPA dengan gaya belajar visual, auditori, dan kinestetik?
- 2. Bagaimana deskripsi literasi sains calon guru IPA dengan gaya belajar visual, auditori, dan kinestetik?
- 3. Apakah terdapat hubungan antara kemampuan multiple represeantasi dengan literasi sains calon guru IPA dengan gaya belajar visual, auditori, dan kinestetik?
- 4. Bagaimana tingkat hubungan antara kemampuan multiple represeantasi dengan literasi sains calon guru IPA dengan gaya belajar visual, auditori, dan kinestetik?

C. Manfaat Penelitian

Hasil-hasil yang diharapkan dari penelitian ini sebagai berikut:

 Memberikan informasi mengenai profil kemampuan representasi calon guru IPA di prodi pendidikan IPA FMIPA UNM dengan gaya belajar visual, auditori, dan kinestetik. 2. Memberikan informasi mengenai profil literasi sains calon guru IPAdi prodi pendidikan IPA FMIPA UNM dengan gaya belajar visual, auditori, dan kinestetik.

BAB II

TINJAUAN PUSTAKA

A. Kemampuan Multiple Representasi

Menurut Chittleboroughi dan Treagust (2007) bahwa Multiple Representasi adalah merepresentasikan suatu konsep dalam banyak cara pada level makroskopis, mikroskopis maupun simbolik. Multiple representasi didefinisikan sebagai bentuk representasi yang memadukan antara teks, gambar nyata, atau grafik.

Multiple Representation memiliki banyak manfaat. Manfaat yang utama menurut Ainsworth (Meij dan Jon, 2003) yaitu multiple representation diharapkan bahwa peserta didik mendapatkan manfaat dari tiap-tiap representasi dan dan pada akhirnya dapat memberikan pemahaman konsep yang dalam dari subjek materi yang diajarkan.

Selain pengembangan pemahaman konsep, Multiple Representation juga dapat mengembangkan pengetahuan proses IPA. Hal tersebut didukung oleh hasil penelitian Waldrip (2006) bahwa terdapat adanya pengakuan bahwa pembelajaran sains di sekolah melingkupi pemahaman dan keterkaitan bahasa, visual dan bentuk matematika untuk mengembangkan pengetahuan konsep dan proses IPA.

Untuk mengembangkan pengetahuan konsep dan proses IPA, peserta didik harus dapat terlibat langsung dalam perolehan informasi. Olayele (2012) yang juga meneliti pembelajaran Multiple Representation menemukan bahwa peserta didik harus dilibatkan secara aktif dengan menggunakan konstruksi representasi mereka. Penelitian ini melibatkan pengajaran pada materi reaksi dan teori tumbukan, dan polusi air dan konsep kelarutan dengan menggunakan berbagai macam konstruksi representasi peserta didik seperti peta konsep, representasi partikulat, grafik, permainan peran, *flowchart*, dan model fisika 3D.

Dalam menampilkan beberapa bentuk representasi suatu materi seperti grafik, peta konsep, video, dll diperlukan sebuah media. Media saat ini sangat

berkembang seiring semakin canggihnya teknologi. Seperti yang dipaparkan oleh Kozma (2003) bahwa teknologi mendukung peserta didik untuk berpikir dan menambah pengetahuan. Oleh karena itu pembelajaran multiple representasi diharapkan dapat meningkatkan hasil belajar mahasiswa calon guru IPA karena dapat memfasilitasi perolehan pengetahuan dengan berbagai cara atau representasi.

Hwang, W.-Y., Chen, N.-S., Dung, J.-J., & Yang, Y.-L., (2007) menyebutkan bahwa terdapat 5 jenis reprsentasi dalam pendidikan matematika yaitu representasi objek real, representasi konkrit, representasi simbol aritmatika, representasi verbalbahasa dan representasi gambar atau grafik. Tiga yang terakhir mengacu pada hal abstrak dan berada pada level tertinggi untuk penyelesaian masalah matematis.

- Language representation skill kemampuan menerjemahkan hasil pengamatan terhadap suatu benda dan hubungannya dalam masalah matetmatis ke dalam bahasa yerbal.
- 2. *Picture or graphic representation skill* Kemampuan dalam menerjemahkan masalah matematis menjadi representasi.
- 3. Arithmetic symbol representation skill kemampuan dalam menerjemahkan masalah matematis menjadi representasi persamaan aritmatika. The skill of translating mathematical problems into arithmetic formula representations.

Beberapa peserta didik lebih menyukai representasi visual atau konkrit, sementara yang lain lebih menyukai representasi yang sifatnya simbolik. Pada umumnya, peserta didik yang memiliki kemampuan menyelesaikan masalah dapat memanipulasi bahasa, gambar, dan representasi formal.

Kemampuan representasi matematis peserta didik dapat diukur melalui beberapa indikator kemampuan representasi matematis. Indikator representasi matematis peserta didik menurut Amelia (2013) adalah sebagai berikut:

- 1. Representasi visual.
- 2. persamaan atau ekspresi matematis.
- 3. kata-kata atau teks tertulis.

Sebagai salah satu standar proses maka NCTM (2000) menetapkan standar representasi yang diharapkan dapat dikuasai peserta didik selama pembelajaran di sekolah yaitu:

- 1. membuat dan menggunakan representasi untuk mengenal, mencatat atau merekam, dan mengkomunikasikan ide-ide matematika;
- 2. memilih, menerapkan, dan melakukan translasi antar representasi matematis untuk memecahkan masalah;
- 3. menggunakan representasi untuk memodelkan dan menginterpretasikan fenomena fisik, sosial, dan fenomena matematika

Suryana (2012) juga memberikan indikator-indikator kemampuan representasi seperti ditunjukkan pada Tabel 2.1.

Tabel 2.1 Indikator Kemampuan Representasi Matematis

No	Representasi	Bentuk-bentuk operasional		
1	Representasi visual a. Diagram, tabel, atau grafik	 Menyajikan kembali data atau informasi dari suatu representasi diagram, grafik atau tabel. Menggunakan representasi visual untuk menyelesaikan masalah. 		
	b. Gambar	 Membuat gambar pola-pola geometri Membuat gambar untuk memperjelas masalah dan memfasilitasi penyelesaiannya. 		
2	Persamaan atau ekspresi matematis	 Membuat persamaan atau model matematika dari representasi lain yang diberikan Membuat konjektur dari suatu pola bilangan 		
		Menyelesaikan masalah dengan melibatkan ekspresi matematis		
3	Kata-kata atau teks tertulis	Membuat situasi masalah berdasarkan data atau representasi yang diberikan		

No	Representasi	Bentuk-bentuk operasional		
		• Menuliskan interpretasi dari suatu representasi		
		Menuliskan langkah-langkah penyelesaian masalah matematika dengan kata-kata		
		Menyusun cerita yang sesuai dengan suatu representasi yang disajikan		
		• Menjawab soal dengan menggunakan kata-kata atau teks tertulis.		

B. Literasi Sains

Menurut OECD secara harfiah, literasi sains terdiri dari kata yaitu *literatus* yang berarti melek huruf dan *scientia* yang diartikan memiliki pengetahuan. Literasi sains merupakan kemampuan menggunakan pengetahuan sains, mengidentifikasi pertanyaan, dan menarik kesimpulan berdasarkan bukti-bukti, dalam rangka memahami serta membuat keputusan berkenaan dengan alam dan perubahan yang dilakukan terhadap alam melalui aktivitas manusia (Yuliati, 2017).

Sementara DeBoer mendefinisikan literasi sains sebagai kemampuan untuk memahami proses sains dan terlibat penuh arti dengan informasi ilmiah yang tersedia di kehidupan sehari-hari. Ide literasi sains dan tingkat kepentingannya untuk siswa memberikan sebuah gambaran bahwa pemahaman mengenai literasi sains merupakan suatu sifat yang mendasar, terutama bagi siswa yang terkait dalam pendidikan sains, lebih lanjut bahwa rata-rata kemampuan literasi sains siswa Indonesia baru sampai pada kemampuan mengenali sejumlah fakta dasar, literasi sains mencerminkan pemahaman yang luas dan fungsional tentang sains untuk tujuan pendidikan secara umum (Dewi & Rochintaniawati, 2016).

Hal senada dikemukakan oleh Toharudin bahwa literasi Sains adalah kemampuan seseorang untuk memahami sains, mengomunikasikan sains (lisan dan tulisan), serta menerapkan pengetahuan sains untuk memecahkan masalah sehingga memiliki sikap dan kepekaan yang tinggi terhadap diri dan lingkungannya dalam

mengambil keputusan berdasarkan pertimbangan-pertimbangan sains (Hartati, 2016).

Sementara itu Priyatni & Nurhadi (2017) mengatakan bahwa makna dan fokus literasi terus berproses dan berkembang. Literasi pada awal kemunculannya dimaknai dengan *keberaksaraan* atau *melek aksara* yang fokus utamanya pada kemampuan membaca dan menulis, dua kemampuan yang menjadi dasar untuk *melek* dalam berbagai hal.

Hayat & Yusuf (2011) juga mengungkapkan bahwa literasi IPA dalam PISA 2003 didefenisikan sebagai kapasitas untuk menggunakan pengetahuan ilmiah, mengidentifikasi pertanyaan, dan menarik kesimpulan berdasarkan fakta dalam rangka memahami alam semesta dan perubahan yang terjadi karena aktivitas manusia. Penilaian Literasi IPA dalam PISA lebih difokuskan pada aplikasi pengetahuan dan keterampilan IPA siswa dalam situasi nyata serta tidak menguji aspek-aspek yang diberikan di dalam kurikulum tertentu.

C. Gaya belajar

Banyak penelitian telah dilakukan untuk meneliti jenis gaya belajar. Dunn & Dunn (1993) menemukan banyak variabel yang mempengaruhi gaya belajar yaitu fisik, emosi, lingkungan, sosial, dan psikologi. Sebagian orang dapat belajar, misalnya, dapat belajar paling baik dengan cahaya terang, sedang yang lain dengan pencahayaan yang suram. Ada yang belajar paling baik secara berkelompok, sedang yang lain lebih memilih adanya pembimbing otoriter seperti orang tua atau guru, yang lain merasa bahwa bekerja sendirilah yang paling efektif bagi mereka.

Walaupun masing-masing peneliti menggunakan istilah yang berbeda DePorter & Hernacki (2006) mengemukakan bahwa para peneliti telah sepakat jika terdapat dua kategori utama tentang bagaimana kita belajar yaitu pertama, bagaimana kita menyerap informasi dengan mudah (modalitas) dan kedua, cara kita mengatur dan mengolah informasi tersebut (dominasi otak). Gaya belajar seseorang adalah kombinasi dari bagaimana ia menyerap, dan kemudian mengatur serta mengolah informasi (DePorter & Hernacki, 2006). Dengan demikian setiap orang memiliki cara atau gaya belajar yang sesuai dengan pribadi mereka sendiri.

Menurut Bandler dan Grinder dalam DePorter, dkk (2006) dijelaskan bahwa meskipun kebanyakan orang memiliki akses ke tiga modalitas--visual, auditorial, dan kinestetik-- hampir semua orang cenderung pada salah satu modalitas belajar yang berperan sebagai saringan untuk pembelajaran, pemrosesan, dan komunikasi. Selanjutnya Markova dalam DePorter (2006) mengatakan bahwa orang tidak hanya cenderung pada satu modalitas, mereka juga memanfaatkan kombinasi modalitas tertentu yang memberi mereka bakat dan kekurangan alami tertentu. Dengan demikian dapat disimpulkan bahwa setiap orang dapat memiliki tiga jenis modalitas atau gaya belajar yaitu bagaimana mereka mengolah informasi tetapi kecenderugan tetap pada salah satu modalitas tersebut.

Ketiga modalitas dengan ciri masing-masing diuraikan sebagai berikut menurut DePorter dkk (2006):

- a. Visual: Modalitas ini mengakses citra visual, yang diciptakan maupun yang diingat. Warna hubungan ruang, potret mental, dan gambar menonjol dalam modalitas ini. Seseorang yang sangat visual mungkin bercirikan sebagai berikut:
 - 1) Teratur, memperhatikan segala sesuatu, menjaga penampilan
 - 2) Mengingat dengan gambar, lebih suka membaca daripada dibacakan
 - 3) Membutuhkan gambaran dan tujuan menyeluruh dan menangkap detail: mengingat apa yang dilihat.
- b. Auditorial: Modalitas ini mengakses segala jenis bunyi dan kata yang diciptakan maupun diingat. Musik, nada, irama, dialog internal, dan suara menonjol di sini. Seseorang yang sangat auditorial. Seseorang yang sangat auditorial dapat dicirikan sebagai berikut:
 - 1) Perhatiannya mudah terpecah
 - 2) Berbicara dengan pola berirama
 - 3) Belajar dengan cara mendengarkan, menggerakkan bibir/bersuara saat membaca
 - 4) Berdialog secara internal dan eksternal

- c. Kinestetik: modalitas ini mengakses segala jenis gerak dan emosi yg diciptakan maupun diingat. Gerakan, koordinasi, irama, tanggapan emosional, dan kenyamanan fisik menonjol di sini. Seseorang yang sangat kinestetik melakukan hal-hal berikut:
 - 1) Menyentuh orang kemudian berdiri dan berdekatan, banyak gerak
 - Belajar dengan melakukan, menunjuk tulisan saat membaca, menganggapi secara fisik
 - 3) Mengingat sambil berjalan

BAB III

METODE PENELITIAN

A. Jenis Penelitian

Jenis penelitian yang digunakan adalah penelitian survey yang bersifat korelasional

B. Variabel Penelitian

Penelitian ini memiliki dua jenis variabel yaitu variabel bebas (*independent variable*) dan variabel tak bebas (*dependent variable*). Variabel bebas penelitian ini yakni (1) Kemampuan Multiple Representasi sedangkan variabel tak bebasnya yakni Literasi sains.

C. Populasi dan Sampel Penelitian

Populasi dalam penelitian ini adalah seluruh mahasiswa S-1 Prodi Pendidikan IPA FMIPA UNM Makassar yang mengikuti kuliah fluida pada tahun akademik 2019/2020. Sedang pengambilan sampel dalam penelitian ini menggunakan *puposive random sampling*.

D. Paradigma Penelitian

Berdasarkan jenis penelitian dan masalah yang dikemukakan dalam penelitian ini, maka paradigma penelitian ini untuk mengetahui hubungan antara variabel-variabel bebas dan variabel tak bebas yang dapat digambarkan dalam bentuk konstelasi hubungan antara variabel seperti tampak berikut ini.

Gambar 3.1 Konstelasi hubungan antara variabel penelitian

Keterangan:

X = Kemampuan Multiple Representasi

Y = Literasi Sains

E. Instrumen Penelitian

Instrumen penelitian terdiri dari 1) tes Kemampuan Multiple Representasi dan 2) Tes Literasi Sains, dan 3) Tes diagnostik Gaya belajar

F. Analisis Data

Analisis data dalam penelitian ini adalah analisis statististik deskriptif dan inferensial. Analisisis dtatistik deskriptif digunakan untuk menggambarkan profil kemampuan multiple representasi dan literasi sains sedangkan statistik inferensial digunakan untuk melihat korelasi antara kedua variabel tersebut.

Untuk menetukan penafsiran nilai korelasi r_{xy} digunakan tabel berikut ini.

Tabel 3.1 Penafsiran Nilai rxy

Besar r_{yx}	Penafsiran
0.00 - < 0.20	Hubungan sangat lemah (diabaikan, dianggap tidak ada)
\geq 0,20 $-$ < 0,40	Hubungan rendah atau lemah
\geq 0,40 $-$ < 0,70	Hubungan sedang atau cukup
\geq 0,70 $-$ < 0,90	Hubungan kuat
\geq 0,90 $-\leq$ 1,00	Hubungan sangat kuat

BAB IV

HASIL DAN PEMBAHASAN

A. Hasil Penelitian

1. Hasil tes diagnostik gaya belajar calon guru IPA

Tes diagnostisk gaya belajar diberikan kepada seluruh mahasiswa program studi pendidikan IPA semester 4 Universitas Negeri Makassar yang memprogram mata kuliah fluida melalui *google form*. Hasil tes tersebut menunjukkan adanya variasi gaya belajar dari mahasiswa. Hasil gaya belajar dapat dilihat pada Tabel 3.1 berikut.

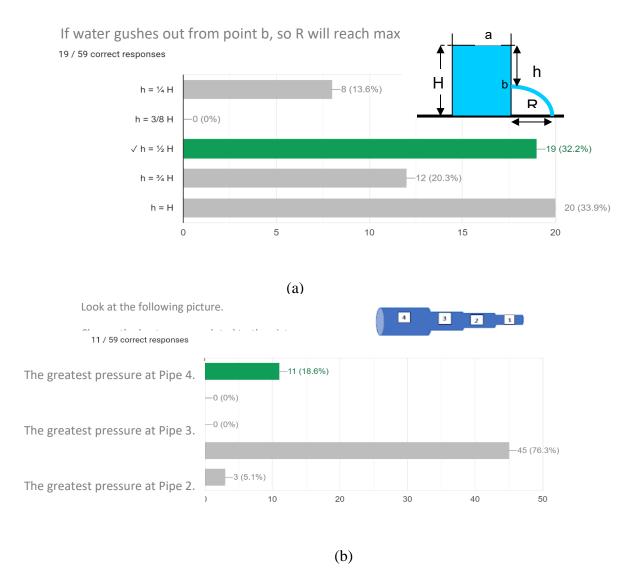
Tabel 4.1 Hasil Tes Diagnostik Gaya Belajar

Learning	Count of Learning	Procentage of
Styles	Style	Learning Style
Auditory	21	35.0%
Kinesthetic	11	18.33%
Visual	28	46.67%
Grand	60	100.00%
Total		

Dari Tabel 4.1 terlihat bahwa persentase gaya belajar terbesar adalah gaya belajar visual sebanyak 46,67% (29 orang). Selain itu jumlah gaya belajar terkecil dimiliki oleh gaya belajar kinestetik dengan jumlah 11 orang dari 59 orang atau sekitar 18,33%. Selanjutnya gaya belajar auditori yang berada pada posisi tengah dengan persentase 35,0%. Selanjutnya setelah memberikan tes diagnostik diberikan tes kemampuan representasi setelah mengikuti mata kuliah fluida.

2. Kemampuan Multiple Representasi berdasarkan gaya belajar

Hasil pemberian tes kemampuan multiple representasi dibedakan atas representasi grafik, gambar, simbol, dan verbal. Berikut ini adalah hasil rata-rata


tes kemampuan representasi dengan kategori yang digunakan adalah 5 kategori yaitu sangat rendah, rendah, sedang, tinggi, dan sangat tinggi

Tabel 4.2 Nilai Rata-rata Kemampuan Multiple Representasi

Learning	Average Value of Representation Ability							
Style	Graph	Level	Image	Level	Symbol	Level	Verbal	Level
	(1)		(2)		(3)		(4)	
Auditory	61.90	Medium	52.38	Low	47.62	Low	59.52	Medium
Kinesthetic	59.09	Medium	63.64	Medium	68.18	High	72.73	High
Visual	59.26	Medium	44.44	Low	44.44	Low	59.26	Medium

Tabel 4.2 memperlihatkan bahwa pada kemampuan representasi grafik pada semua jenis gaya belajar berada pada kategori sedang. Selanjutnya pada kemampuan representasi gambar, nilai rata-rata tertinggi diperoleh oleh calon guru dengan gaya belajar kinestetik dengan nilai 63,64 pada kategori sedang dan terendah dimiliki oleh gaya belajar visual dengan kategori rendah. Data selanjutnya menunjukkan kemampuan representasi simbol matematis dan terlihat bahwa nilia rata-rata tertinggi dimiliki oleh calon guru dengan gaya belajar kinestetik dengan kategori tinggi. Hal ini berlaku juga dengan hasil rata-rata nilai dari kemampuan representasi verbal yang juga tertinggi dimiliki oleh gaya belajar kinestetik.

Hasil dari analisis soal yang diberikan, ditemukan bahwa terdapat 2 soal dimana banyak dari mahasiswa calon guru IPA yang memilih jawaban yang salah. Dua jenis soal ini adalah tipe soal yang dibuat untuk mengukur kemampuan representasi gambar, soal no 2 dan soal no 5. Soal no 2 mememperlihatkan sebuah gambar dari wadah yang dilubangi sisinya sehingga air memancar dari wadah tersebut, dan berdasarkan gambar mahasiswa diminta untu menentukan bagaimana agar jangkauan air adalah maksimum (lihat Gambar 3.1 (a)). Selanjutnya soal no 5 juga memperlihatkan gambar pipa yang disusun dengan diameter yang berbeda, peserta diminta untuk memilih tekanan yang terbesar pada ke empat tabung tersebut (lihat Gambar 4.1 (b)).

Gambar 4.1 (a) soal no 2 dan persentase jawaban, (b) soal no 5 dan persentase jawaban

Dari jumlah peserta yang menjawab benar, misalnya pada soal no 2, diperoleh data bahwa 19 orang menjawab benar tersebar pada ketiga jenis gaya belajar. Selanjutnya pada soal no 5 terlihat bahwa 6 mahasiswa dengan gaya belajar auditori yang menjawab benar dari 11 peserta, dan hanya 2 orang yang menjawab benar dari mahasiswa dengan gaya belajar visual (perhatikan Tabel 4.3).

Tabel 4.3 Dua Soal yang Banyak Peserta Menjawab Salah

Learning	Item Number				
Style	No 5 (Image)		No	8 (Image)	
	Total	percentage	Total	percentage	
Visual	6	32%	2	18%	
Auditory	7	37%	6	55%	
Kinestetik	6	32%	3	27%	
Grand Total	19	100%	11	100%	

3. Literasi Sains Berdasarkan Gaya Belajar

a). Data Statistik Deskriptif Literasi Sains Calon Guru IPA

Tes literasi sains diberikan sebanyak 29 nomor dan terdiri dari jenis soal yang bervariasi (piliha ganda, essay, dan pernyataan benar salah dan ya tidak). Nilai hasil tes kemudian dibagi berdasarkan jenis gaya belajar. Berikut Hasil analisis statsitik deskriptif data literasi sains calon guru IPA berdasarkan gaya belajarnya.

Tabel 4.4 Hasil Statistik Deskriptif Literasi Sains berdasarkan Gaya Belajar

Jenis Gaya Belajar	Rerata Nilai Literasi Sains	Kategori	Standar Deviasi	Jumlah sampel
Auditori	65.42	Sedang	10.71	20
Kinestetik	65.48	Sedang	11,94	11
Visual	65.27	Sedang	11.49	29
Total	65,36	Sedang	11,12	60

Dari Tabel 4.4 menunjukkan banwa nilai rata-rata literasi sains di ketiga gaya belajar tidak berbeda (bisa dikatakan sama) yang berada dalam kategori sedang. Secara keseluruhan dari jumlah peserta 60 orang, rata-rata literasi sains calon guru IPA adalah 65,36 dengan kategori sedang.

b). Nilai Rata-rata dan Kategori Literasi Sains Berdasarkan Tema Soal

Soal literasi sains yang diberikan ke sampel penelitian terdiri dari 9 tema yang dan setiap tema tersebut terdiri dari beberapa soal dengan variasi jenis soal. Berikut hasil rata-rata nilai literasi sains per tema dengan kategorinya.

Tabel 4.5 Nilai Rata-rata Literasi Sains Per Tema dan Kategorinya

NO	Materi/Tema	Rerata Nilai	Kategori
1	Energi pasang	62.29	Sedang
2	Fase bulan	84.46	Tinggi
3	Kebakaran	58.98	Sedang
4	Kereta tercepat	61.02	Sedang
5	Pabrik Penisilin	69.70	Sedang
6	Pengawetan ikan	62.34	Sedang
7	Pengolahan air	52.02	Rendah
8	Peredaran bulan	57.63	Sedang
9	Ukuran benda	70.48	Sedang

Nilai rata-rata literasi sains tertinggi pada tema fase bulan dengan nilai 84,46 pada kategori tinggi dan terendah pada tema pengolahan air dengan nilai 52,02 pada kategori rendah. Pada tema yang lain, masing-masing berada pada kategori sedang.

4. Hasil Analisis Korelasi/Hubungan kemampuan Multiple Representasi dengan Literasi sains

1) Uji Normalitas

Sebelum melakukan uji korelasi terlebih dahulu dilakukan uji normalitas data pada dua jenis data kemampuan Mutiple Representasi dan Literasi Sains pada 60 sampel penelitian. Uji Normalitas data dilakukan dengan menggunakan SPSS dan diperoleh hasil kedua variabel terdistribusi normal.

Tabel 4.6 Hasil Hasil Analisis Uji Normalitas

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of MR is normal with mean 83.37 and standard deviation 6.53.	One-Sample Kolmogorov- Smirnov Test	.041	Reject the null hypothesis.
2	The distribution of Literasi is norm with mean 65.36 and standard deviation 11.12.	naOne-Sample Kolmogorov- Smirnov Test	.053	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

2) Uji Korelasi

Setelah data dinyatakan terdistribusi normal selanjutnya dilakukan uji korelasi menggunakan SPSS dengan korelasi Pearson. Hasil analisis korelasi kemampuan Multiple Representasi dengan Literasi Sains sebagai berikut.

Tabel 4.7 Hasil Analisis Uji Korelasi kemampuan MR dan Literasi Sains

Correlations				
		MR	Literasi	
	Pearson Correlation	1	.139	
MR	Sig. (2-tailed)		.289	
	N	60	60	
	Pearson Correlation	.139	1	
Literasi	Sig. (2-tailed)	.289		
	N	60	60	

Hasil analisis menunjukkan bahwa kemampuan Multiple Representasi dengan Literasi Sains berkorelasi positif dengan nilai r sama dengan 0,139. Nilai ini menunjukkan bahwa korelasi pada pada level sangat lemah.

5. Hasil Analisis Hubungan kemampuan Multiple Representasi dengan Literasi sains berdasarkan Gaya Belajar

 Hasil Analisis Korelasi kemampuan Multiple Representasi dengan Literasi sains Berdasarkan Gaya Belajar Visual

a) Uji Normalitas

Sebelum dilakukan analisis uji korelasi, terlebih dahulu harus dilakukan uji normalitas dari data kelompok gaya belajar visual sejumlah 29 mahasiswa. Uji normalitas data menggunakan SPSS dan diperoleh hasil bahwa data terdistribusi normal dengan hasil sebagai berikut.

Tabel 4.8 Hasil Uji Normalitas Kelompok Gaya Belajar Visual

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of Literasi is norm with mean 65.27 and standard deviation 11.49.	aDne-Sample Kolmogorov- Smirnov Test	.117	Retain the null hypothesis.
2	The distribution of MR is normal with mean 82.03 and standard deviation 6.33.	One-Sample Kolmogorov- Smirnov Test	.590	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

b) Uji korelasi Kelompok Gaya Belajar Visual

Uji korelasi dilakukan setelah data kelompok gaya belajar visual dinyatakan terdistribusi normal. Hasil analisis uji korelasi sebagai berikut.

Tabel 4.9 Uji Korelasi Kelompok Gaya Belajar Visual

Correlations

		Literasi	MR
	Pearson Correlation	1	050
1 :4 :	Sig. (2-tailed)		.798
Literasi	Covariance	131.994	-3.610
	N	29	29
	Pearson Correlation	050	1
MR	Sig. (2-tailed)	.798	
IVIK	Covariance	-3.610	40.034
	N	29	29

Dari hasil analisis diperoleh informasi bahwa terdapat korelasi negatif dari kemampuan multiple representasi dan literasi sains dengan r sebesar -0.05.

2) Uji Korelasi Berdasarkan Gaya Belajar Auditori

a) Uji Normalitas

Sebelum dilakukan analisis uji korelasi kelompok gaya belajar auditori, terlebih dahulu harus dilakukan uji normalitas. Hasil uji normalitas data sebagai berikut.

Tabel 4.10 Hasil Uji Normalitas Kelompok Gaya Belajar Visual

Hypothesis Test Summary othesis Test Sig

	Null Hypothesis	Test	Sig.	Decision
,	The distribution of Literasi is norr 1 with mean 65.42 and standard deviation 10.71.	naOne-Sample Kolmogorov- Smirnov Test	.822	Retain the null hypothesis.
2	The distribution of MR is normal 2 with mean 83.20 and standard deviation 6.53.	One-Sample Kolmogorov- Smirnov Test	.073	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

Tabel 4.10 menunjukkan kedua data baik data kemampuan multiple representasi dan literasi sains pada kelompok gaya belajar auditori terdistribusi normal. Oleh karena itu, data selanjutnya dianalisis uji korelasi.

b) Uji korelasi Kelompok Gaya Belajar Auditori

Uji korelasi dilakukan setelah data kelompok gaya belajar auditori dinyatakan terdistribusi normal. Hasil analisis uji korelasi sebagai berikut.

Tabel 4.11 Uji Korelasi Kelompok Gaya Belajar Auditori

Correlations				
		Literasi	MR	
	Pearson Correlation	1	.279	
	Sig. (2-tailed)		.234	
Literasi	Covariance	114.636	19.494	
	N	20	20	
	Pearson Correlation	.279	1	
MD	Sig. (2-tailed)	.234		
MR	Covariance	19.494	42.695	
	N	20	20	

c) Uji Korelasi Kelompok Gaya Belajar Kinestetik

i. Uji Normalitas

Sebelum dilakukan analisis uji korelasi kelompok gaya belajar auditori, terlebih dahulu harus dilakukan uji normalitas. Hasil uji normalitas data sebagai berikut.

Tabel 4.12 Hasil Uji Normalitas Kelompok Gaya Belajar Kinestetik

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of Literasi is norm with mean 65.48 and standard deviation 11.94.	aOne-Sample Kolmogorov- Smirnov Test	.570	Retain the null hypothesis.
2	The distribution of MR is normal with mean 87.18 and standard deviation 6.10.	One-Sample Kolmogorov- Smirnov Test	.687	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

Tabel 4.12 menunjukkan kedua data baik data kemampuan multiple representasi dan literasi sains pada kelompok gaya belajar kinestetik terdistribusi normal. Oleh karena itu, data selanjutnya dianalisis uji korelasi.

ii. Uji Korelasi Kelompok Gaya Belajar Kinestetik

Uji korelasi dilakukan setelah data kelompok gaya belajar kinestetik dinyatakan terdistribusi normal. Hasil analisis uji korelasi sebagai berikut.

Tabel 4.13 Uji Korelasi Kelompok Gaya Belajar Kinestetik

Correlations

		Literasi	MR
_	Pearson Correlation	1	.438
Litanasi	Sig. (2-tailed)		.178
Literasi	Covariance	142.567	31.901
	N	11	11
	Pearson Correlation	.438	1
MR	Sig. (2-tailed)	.178	
IVIK	Covariance	31.901	37.164
	N	11	11

B. Pembahasan

1. Kemampuan Multiple representasi ditinjau dari gaya belajar

Pemberian tes diagnostik gaya belajar dimaksudkan untuk mendeteksi jenis gaya belajar mahasiswa calon guru IPA. Hal tersebut dimaksudkan agar hasil dari tes tersebut peneliti dapat memperoleh informasi sebaran gaya belajar pada subjek penelitian dan gaya belajar apa yang dominan maupun sebaliknya dari calon guru IPA tersebut. Pemberian tes ini juga dimaksudkan untuk memperoleh gambaran bagaimana kemampuan representasi dari setiap gaya belajar tersebut.

Dari hasil penelitian diperoleh informasi bahwa gaya belajar yang dominan pada mahasiswa calon guru IPA semester 4 sejumlah 59 orang adalah visual kemudian disusul oleh gaya belajar auditori dan kinestetik. Hasil ini sejalan dengan jumlah gaya belajar visual di seluruh dunia yaitu 83% orang visual, meskipun persentase jumlah orang visual pada calon guru IPA ini lebih sedikit yakni 45%. Penelitian yang dilakukan Chetty, et all, (2019) juga menemukan bahwa dari 251 siswa yang diberikan tes gaya belajar hasilnya menunjukkan mayoritas siswa adalah gaya belajar visual. Selanjutnya bersadarkan hasil tersebut, gaya mengajar disesuaikan dengan gaya belajar siswa dan hasilnya menunjukkan bahwa ada dampak yang signifikan ketika menyesuaikan gaya mengajar dengan gaya belajar siswa (Chetty, 2019: Afzaal, S, 2019). Hasil ini menunjukkan pentingnya mengetahu gaya belajar siswa agar cara mengajar menyesuaikan dengan gaya belajar mereka.

Walaupun beberapa penelitian menunjukkan bahwa terdapat pengaruh yang signifikan jika cara mengajar disesuaikan dengan gaya belajar siswa tepai terdapat pula penelitian yang menunjukkan hal sebaliknya. Beberapa hasil penelitian yang dilakukan menunjukkan bahwa memasukkan unsur gaya belajar untuk mendesain pembelajaran yang sesuai tidak dapat berkontribusi dalam kualitas pemecahan masalah ataupun meningkatkan pengetahuan deklaratif. Hasil penelitian menunjukkan kurangnya korelasi antara variabel gaya belajar dengan prestasi akademik. Hasil yang ditunjukkan baik dari prestasi dibidang sains maupun matematika, keduanya menunjukkan tidak ada korelasi antaraprestasi belajar

dengan gaya belajar (Wilson, M, 2012). Penelitian lainnya yang juga menemukan bahwa tidak ada pengaruh gaya belajar dan bentuk dari cara pengajarannya terhadap prestasi akademik siswa (Chimermanova, I, 2018). Hasil ini menunjukkan bahwa terdapt faktor-faktor lain yang dapat berpengaruh terhadap hasil belajar siswa.

Salah satu faktor yang dapat berperan dalam hasil belajar adalah penerapan multiple representasi dalam pembelajaran. Hasil penelitian menunjukkan bahwa dalam pembelajaran IPA, siswa dapat memahami konsep IPA dengan baik ketika mereka menggunakan multiple representasi (Marpaung, 2016; Abdurrahman; 2016; Wati, et al; 2020)). Informasi yang disajikan dalam multiple representasi memberikan data pendukung yang mendukung proses kognitif serta dapat mengurangi kemungkinan kesalahan interpretasi dari suatu konsep sehingga memperkuat pemahaman konsep (Ainsworth, 1999)

Kemampuan multiple representasi yang diukur dalam penelitian ini adalah representasi gambar, grafik, simbol, dan verbal ditinjau dari gaya belajar visual, auditory, dan kinestetik. Penelitian ini dimaksudkan untuk melihat gambaran kemampuan representasi dari siswa dengan gaya belajar visual, auditory, dan kinestetik. Dari hasil analisis data tes kemampuan representasi, diperoleh informasi bahwa untuk kemampuan representasi grafik, ketiga gaya belajar memiliki level kemampuan medium yang artinya bahwa siswa dengan gaya belajar berbeda memiliki kemampuan representasi grafik yang relatif sama. Hasil ini juga menunjukkan bahwa kemampuan representasi grafik masih perlu ditingkatkan lagi hingga ke level tinggi atau sangat tinggi.

Selanjutnya kemampuan representasi simbol matematis yang menunjukkan hasil nilai rata-rata tertinggi dimilihi oleh siswa dengan gaya belajar kinestetik, level medium. Kemampuan representasi simbol, siswa dengan gaya belajar visual dan auditory berada pada level rendah. Hasil ini mirip dengan kemampuan representasi verbal dimana siswa dengan gaya belajar kinestetik yang memiliki nilai tertinggi berada pada level tinggi sedangkan dua gaya belajar lainnya pada level medium. Hasil menunjukkan bahwa siswa dengan gaya belajar kinestetik memiliki

pengetahuan kognitif tentang fluida lebih baik debandingkan dua gaya belajar lainnya. Pengetahuan konsep yang baik ini dipengaruhi oleh kemampuan merepresentasikan materi dalam berbagai representasi sehingga meminimalisir miskonsepsi.

Selanjutnya kemampuan representasi gambar dimana hasil tes menunjukkan bahwa siswa dengan gaya belajar kinestetik memiliki kemampuan representasi gambar lebih baik dibandingkan dua gaya belajar lainnya yaitu pada level medium sedangkan yang lain pada level rendah. Hasil ini cukup mengejutkan karena justru kemampuan represerentasi gambar dari siswa dengan gaya belajar visual itu tergolong rendah. Seperti yang diketahui bahwa siswa dengan gaya belajar visual mudah menerima dan mengolah informasi jika disajikan dalam bentuk informasi secara visual seperti gambar, grafik, dll (DePorter & Hernacki, 2006).

Secara general nilai rata-rata kemampuan representasi gambar dari ketiga jenis gaya belajar tergolong rendah. Dilihat dari beberapa item soal dari representasi gambar menunjukkan banyak siswa yang memilihi jawaban yang salah. Soal yang dimaksud adalah soal nomor 5 dan nomor 8. Pada soal Soal no 5 disajikan gambar dan siswa harus bs menentukan jangkauan maksimum air yang keluar dari tabung. Soalnya membutuhkan kemampuan siswa dalam merepresentasikan gambar menjadi simbol dan memerlukan pengtahuan untuk merumuskan dalam bentuk persamaan matematis sehingga ada faktor dari pengetahuan kognitif siswa untuk bisa menjawab soal ini dengan benar. Oleh karena itu pemilihan jawaban tidak hanya dipengeruhi oleh kemampuan representasi gambar siswa tetapi juga pengetahuan kognitifnya. Selanjutnya pada soal no 8 menunjukkan banyak siswa yang memilih jawaban yang kontras dengan jawaban yang benar. Hasil ini mengindikasikan adanya miskonsepsi pada konsep tersebut.

Melihat hasil tersebut maka sangat penting untuk menerapkan pembelajaran multiple representasi di kelas, mengajarkan bagaimana menerjemahkan representasi gambar ke dalam persamaan matematis atau simbol matematis, atau memenerjemahkan representasi matematis ke dalam representasi verbal dan

sebagainya sehingga pemahaman mengenai suatu konsep terbangun dengan baik dan tidak terjadi miskonsepsi. (Fatimah; 2016, Kohl 2004: Wati, M, 2020)

2. Literasi Sains Ditinjau dari gaya belajar

Tes literasi sains yang diberikan kepada mahasiswa calon guru IPA merupakan tes Literasi sains PISA yang diadaptasi. Tes ini terdiri dari 29 item soal dari 9 tema yaitu 1) Pabrik pinisilin, 2) Kereta tercepat di dunia, 3) Kebakaran, 4) Pengolahan air, 5) Fase bulan, 6) Pengawetan Ikan, 7) Ukuran benda, 8) Peredaran bulan, dan 9) Energi Air Pasang. Nilai Literasi sains calon guru IPA dari beberapa tema memiliki perbedaan. Nilai rata-rata literasi sains tertinggi pada tema fase bulan pada kategori tinggi dan terendah pada tema pengolahan air dengan nilai pada kategori rendah, sedangkan teman yang lain masing-masing berada pada kategori sedang.

Soal-soal pada materi atau tema pengolahan air terdiri dari empat soal (3 essay, dan 1 pilihan ganda). Banyak mahasiswa melakukan kesalahan pada saat mengamati gambar instalasi pengolahan air laut menjadi air tawar, kesalahan dalam menginterpretasikan gambar tersebut, tidak memahami konsep destilasi/penyulingan, dan salah dalam melakukan prediksi hasil instalasi. Hal itu berakibat pada kesalahan dalam memilih jawaban dan menuliskan jawaban yang benar. Oleh karena itu sangat penting bagi mahasiswa calon guru IPA memiliki keterampilan mengamati, keterampilan dalam interpretasi gambar, keterampilan prediksi, dan pemahaman konsep. Keterampilan-keterampilan proses sains (KPS) tersebut sangat penting dimiliki oleh siswa atau mahasiswa dan dan KPS tersebut merupakan bagian dari literasi sains. Menurut Crowell & Schunn (2016), literasi sains merupakan gabungan pengetahuan dasar, dasar dari keterampilan berpikir kritis atau penerapan dari kedua hal dasar ini (pengetahuan dan keterampilan) untuk membuat keputusan dalam kehidupan sehari.

Walaupun KPS sebagai bagian dari literasi sains merupakan hal penting tetapi tidak bisa dipungkiri aplikasi KPS di sekolah masih rendah. Hasil PISA menunjukkan pada tahun 2015 Indonesia berada pada peringkat ke-64 dari 72 negara yang ikut serta, dengan perolehan skor yaitu 403 (Yuliati, 2017).

Berdasarkan hasil survey tersebut skor peserta didik Indonesia pada kemampuan literasi sains masih jauh di bawah skor standar internasional yang ditetapkan oleh lembaga OECD yaitu 500. Dari hasil tersebut diketahui bahwa yang membuat nilai PISA siswa Indonsesia rendah adalah di aspek keterampilan proses Sains. Hasil tersebut sejalan dengan pernyataan Rusilowati (2014), bahwa siswa lebih pandai menghafal dibandingkan dengan keterampilan proses sains. Siswa lebih menguasai pengetahuan dibandingkan keterampilan. Hasil penelitian Irwan, A., dkk (2019) juga bahwa menemukan bahwa kesalahan paling banyak dilakukan siswa pada soal dengan indikator pengetahuan epistemik dan indikator menafsirkan data dan bukti secara ilmiah dikarenakan dalam menjawab soal tidak mengendalkan hafalan peserta didik melainkan kemampuan berpikir untuk memahami sebuah hal dan memberikan alasan maupun kesimpulan atas hal tersebut.

Selain melihat literasi sains dalam setiap tema atau materi, dalam penelitian ini juga melihat bagaimana gambaran literasi sains dilihat dari gaya belajar calaon guru IPA. Hasil menunjukkan bahwa rata-rata nilai literasi sains calon guru IPA untuk ketiga gaya belajar relatif sama dengan kategori sedang. Dengan demikiaan dapt dikatakan bahwa literasi sains mahasiswa tidak dipengaruhi oleh jenis gaya belajarnya.

3. Hubungan Kemampuan Multiple Representasi dengan Literasi Sains ditinjau dari Gaya Belajar

Hasil analisis uji korelasi hubungan kemampuan multiple Representasi dengan Literasi sains pada 60 Sampel menunjukkan adalah korelasi positif tetapi dengan nilai r sama dengan 0,139. Nilai r ini menunjukkan bahwa terdapat hubungan yang sangat lemah pada kedua variabel berdasarkan data yang diperoleh. Selanjutnya uji korelasi dikelompokkan berdasarkan kelompok gaya belajar.

Hasil uji korelasi kelompok gaya belajar visual menunjukkan hasil yang kurang bagus. Hasil tersebut diperoleh nilai r sama dengan -0,05, yang artinya korelasi keduanya negatif. Uji korelasi selanjutnya dilakukan pada kelompok belajar auditori dan ditemukan informasi bahwa nilai r yang diperoleh sebesar 0,279. Hasil

r ini menunjukkan bahwa korelasi kedua variabel positif dan berada pada kategori lemah. Selanjutnya uji korelasi pada kelompok belajar kinestetik dan didapati nilai r sebesar 0,438. Nilai r ini menunjukkan bahwa hubungan antara kemampuan multiple representasi dengan literasi sains berada pada kategori sedang.

Hasil r dari kelompok sampel calon guru IPA berada pada kategori sangat lemah dapat dipahami karena setelah melihat nilai r pada masing-masing kelompok gaya belajar menujukkan variasi dari korelasi negatif, korelais positif pada kategori lemah, dan korelasi positif pada kategori sedang. Bagaimanapun, keduanya pada akhirnya menunjukkan bahwa terdapat korelasi positif antara kemampuan representasi denngan literasi sains. Hasil ini memberi gambaran bahwa jika siswa atau mahasiswa memiliki kemampuan representasi yang baik maka seharusnya mereka memiliki literasi sains yang baik pula. Hal ini sejalan dengan hasil penelitian Armas, A. R. k, dkk (2019) bahwa terdapat hubungan antara literasi sains dengan prestasi belajar peserta didik pada pembelajaran Kimia Kelas XI MIPA SMA Negeri se-Kota Makassar dengan tingkat korelasi sedang. Penelitian lain yang mendukung adalah hasil dari penelitian Lestari, I. D.(2017) bahawa ada pengaruh literasi sains terhadap kemampuan kognitif siswa pada konsep ekosistem dengan nilai r 0,685 yaitu kategori sedang.

BAB V

KESIMPULAN DAN SARAN

A. Kesimpulan

- 1. Nilai Rata-rata tertinggi dari representasi grafik dimiliki oleh mahasiswa dengan gaya belajar visual pada kaegoti sedang. Selanjutnya nilai tertinggi dari kemampuan representasi gambar, simbol dan verbal dimiliki oleh gaya belajar kinestetik dengan kategori, medium, tinggi dan tinggi. Berdasarkan hasil ini disimpulkan bahwa Kemampuan Multiple representasi oleh Calon guru IPA dengan gaya belajar kinestetik lebih baik dibandingkan gaya belajar lainnya.
- 2. Rata-rata Literasi sains calon guru IPA untuk ketiga gaya belajar memiliki nilai yang hampir sama dengan kategori masing-masing sedang. Nilai rata-rata Literasi Sains tertinggi untuk tema/materi yaitu tema fase bulan pada kategori tinggi dan rendah pada materi pengolahan air.
- 3. Terdapat hubungan kemampuan multiple Representasi dengan Literasi sains dengan level hubungan yang sangat lemah. Selanjutnya pada kelompok gaya belajar visual kedua variabel menujukkan korelasi negatif yang sangat lemah. Selanjutnya, Pada kelompok gaya belajar auditori, hasil menunjukkan adanya korelasi yang berada pada kategori lemah. Yang terakhir, hasil uji korelasi kelompok dengan gaya belajar kinesteti menujukkan korelasi pad akategori sedang atau cukup.

B. Saran

Bagi peneliti selanjutnya sebaiknya mengambil sampel yang lebih besar untuk melihat gambaran literasi sains dan kemampuan multiple representasi calon guru IPA dan juga membuat tes literasi untuk sub materi tertentu secara lebih mendalam.

DAFTAR PUSTAKA

- Abdurrahman, R. A. 2016. Limitation of representation mode in learning gravitational concept and its influence toward student skill problem solving. In Proceeding of The 2nd International Seminar on Science Education (pp. 373-377).
- Ainsworth, S. (1999). The functions of multiple representations. Computers & education, 33(2-3), 131-152.
- Armas, A. R. k, dkk. 2019. Hubungan Antara Literasi Sains Dengan Prestasi Belajar Peserta Didik Pada Pembelajaran Kimia Kelas Xi MIPA SMA Negeri Se-Kota Makassar. eprint.unm.ac.id
- Azfaal, S, Noor Zainah Siau and Wida Susanty Hj. Suhali, 2019. Evaluating Students' Personality and Learning Styles in Higher Education: Pedagogical Considerations. International Journal of Learning, Teaching and Educational Research Vol. 18, No. 7, pp. 145-164, July 2019
- Crowell, A. & Schunn, C. 2016. Unpacking The Relationship Between Science Education and Applied Scientific Literacy. Research in Science Education, 46(1): 129–140.
- Chetty. N. D. S, Sahabuddin, N. A., Ali, Z., Hamzah N., Abdul Rahman, N., Kasim, S. Nithya. 2019. Learning styles and teaching styles determine students' academic performances. *International Journal of Evaluation and Research in Education (IJERE)* Vol. 8, No. 3, September 2019, pp. 610~615
- Cimermanová, I. (2018). The Effect of Learning Styles on Academic Achievement in Different Forms of Teaching. *International Journal of Instruction*, 11(3), 219-232.
 - https://doi.org/10.12973/iji.2018.11316a
- DePorter & Hernacki. 2006. Quantum Learning. PT. Mizan Pustaka. Bandung
- Dewi, P. S., & Rochintaniawati, D. (2016). Kemampuan Proses Sains Siswa Melalui Pendekatan Saintifik Dalam Pembelajaran IPA Terpadu Pada Tema Global Warming. *EDUSAINS*, Vol 8 No 1, 18-26.
- Dunn, Rita & Dunn Kenneth. 1993. *Teaching Secondary students through their individual learning styles*. Allyn & Bacon. Needhan Heights Massachusetts.
- Fatimah, S. (2016). Analisis multirepresentasi mahasiswa PGSD pada konsep gelombang dan bunyi. Premiere Educandum: Jurnal Pendidikan Dasar dan Pembelajaran, 6(02).
- Galuh Rahayuni, 2016. Hubungan keterampilan berpikir kritis dab literasi sains pada pembelajaran IPA terpasu dengan model PBM dan STM.. JPPI. Vol 2. No.2, desember 2016, hal 131-146

- Hartati, R. (2016). Peningkatan Aspek Sikap Literasi Sains Siswa SMP Melalui Penerapan Model Problem Based Learning Pada Pembelajaran IPA Terpadu. *EDUSAINS*, Vol 8 No 1, 90-97.
- Hayat, B., & Yusuf, S. (2011). *Benchmark Internasional Mutu Pendidikan*. Jakarta: Bumi Aksara.
- Hwang, W.-Y., Chen, N.-S., Dung, J.-J., & Yang, Y.-L. (2007). Multiple Representation Skills and Creativity Effects on Mathematical Problem Solving using a Multimedia Whiteboard System. Educational Technology & Society, 10 (2), 191-212)
- Irwan, A. P, Usman, Amin, Bunga Dara, 2019. Analisis Kemampuan Literasi Sains Peserta Didik Ditinjau Dari Kemampuan Menyelesaikan Soal Fisika Di SMAN 2 Bulukumba. *Jurnal Sains dan Pendidikan Fisika (JSPF)* Jilid 15, Nomor 3. Desember 2019 Hal: 17 24
- Kai Wu, Hsin dan Puntambekar, S. 2012 Pedagogical Affordance of Multiple External Representations in Scientific Processes. J. Sci Educ Technol (2012) 21: 754-756.
- Kohl, P.B. & Finkelstein, (2004). Representational Format, Student Choice, and Problem Solving in Physics. Physics Educational Research Conference. (PER) Sacramento, California. 790: 121-124.
- Kozma, R. 2003. The Material Features of Multiple Representation and Their Cognitive and Social Affordance For Science Understanding, Learning and Instruction, 13(2), 205-226.
- Lestari, I. D. 2017. Pengaruh Literasi Sains Terhadap Kemampuan Kognitif Siswa Pada Konsep Ekosistem. *Prosiding Seminar Nasional Pendidikan FKIP UNTIRTA*
- Marpaung, N., Liliasari, L., & Setiawan, A. (2016, November). Identifikasi Kemampuan Multipel Representasi Mahasiswa Calon Guru Fisika. In Prosiding Seminar Biologi (Vol. 13, No. 1, pp. 445-449)
- Meij, J. and Ton de Jong, Ton de 2003. *Learning with Multiple Representations Supporting students' translation between representations in a simulation-based learning environment*, makalah dipresentasikan pada the EARLI conference, Padua, Italy, August 26th 2003.
- Olaleye, B.O. 2012. "Enhancing Teachers' Knowledge for Using Multiple Representations in Teaching Chemistry in Nigerian Senior Secondary Schools", Ph.D. Thesis, Edith Cowan University,
- Priyatni, E. T., & Nurhadi. (2017). *Membaca Kritis dan Literasi Kritis*. Tangerang: Tira Smart.

- Rusilowati, A. (2014). Analisis Buku Ajar IPA yang Digunakan di Semarang Berdasarkan Muatan Literasi Sains. Proceeding Seminar Nasional Konservasi dan Kualitas Pendidikan 2014, (pp. 6-10). Semarang
- Tim penyusun. 2010. Pedoman pengelolaan Pengembangan keprofesian berkelanjutan (PKB). Kementerian Pendidikan Nasional. Direktorat Jenderal Peningkatan Mutu Pendidik dan Tenaga Kependidikan
- Tim Penyusun. 2011. Mentransformasi Tenaga Pendidikan Indonesia Volume I: Ringkasan Eksekutif Pembangunan Manusia Kawasan Asia Timur dan Pasifik. The World Bank Office Jakarta.
- Waldrip, B dkk. 2006. Learning Junior Secondary Science through Multi-Modal Representations, *Electronic Journal of Science Education* Preview Publication for Vol. 11, No. 1
- Wati, Mustika, Mahtari, Saiyidah, Ramlah dan Misbah. (2020). Studi Kemampuan Representasi Siswa Pada Pokok Bahasan Hukum Newton. Jurnal Inovasi dan Pembelajaran Fisika, Vol 7 (1) 1-6
- Wilson, M. 2012. Student's learning style and preferences and teachers' instructional strategies: Correlation between matched styles and academic achievement. *STRATE Journal. Fall-winter* 2012, vol 22 number 1. Pg-36
- Yuliati, Y. (2017). Literasi Sains Dalam Pembelajaran IPA. *Jurnal Cakrawala Pendas*, Vol 3 No 2, 21-28.

LAMPIRAN-LAMPIRAN

Lampiran 1 Surat Perjanjian Pelaksanaan Penelitian

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI MAKASSAR (UNM) LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT (LP2M)

Menara Pinisi UNM Lt. 10 Jalan A. Pangerang Pettarani, Makassar Telepon: 0411-865677 Fax. 0411-861377 Laman: www.unm.ac.id Email: lppm@unm.ac.id & lemlitunm@yahoo.co.id

KONTRAK PENELITIAN PNBP FMIPA UNM TAHUN ANGGARAN 2020

NOMOR: 1247/UN36.11/LP2M/2020

Pada hari ini Rabu tanggal Tiga belas bulan Mei tahun Dua ribu dua puluh, kami yang bertanda tangan di bawah ini:

1 Prof. Dr. Ir. H. Bakhrani A. Rauf, M.T

: Ketua Lembaga Penelitian dan Pengabdian kepada Masyarakat (LP2M), Universitas Negeri Makassar, dalam hal ini bertindak untuk dan atas nama Universitas Negeri Makassar, yang berkedudukan di Jl. Andi Pangerang Pettarani Makassar, untuk selanjutnya disebut PIHAK PERTAMA;

2 Sitti Rahma Yunus, S.Pd., M.Pd

Dosen FMIPA Universitas Negeri Makassar, dalam hal ini bertindak sebagai pengusul dan Ketua Tim Pelaksana Penelitian PNBP FMIPA UNM Tahun Anggaran 2020 untuk selanjutnya disebut **PIHAK KEDUA.**

PIHAK PERTAMA dan PIHAK KEDUA, secara bersama-sama sepakat mengikatkan diri dalam suatu Kontrak Penelitian, dengan ketentuan dan syarat sebagai berikut:

PASAL 1 RUANG LINGKUP KONTRAK

PIHAK PERTAMA memberi pekerjaan kepada **PIHAK KEDUA** dan **PIHAK KEDUA** menerima pekerjaan tersebut dari **PIHAK PERTAMA**, untuk melaksanakan dan menyelesaikan Penelitian PNBP FMIPA UNM Tahun Anggaran 2020 dengan judul:

"Analisis Hubungan Antara Kemampuan Multiple Representasi dan Literasi Sains Calon Guru IPA Berdasarkan Gaya Belajar".

PASAL 2 DANA PENELITIAN

- (1) Besarnya dana untuk melaksanakan penelitian dengan judul sebagaimana dimaksud pada Pasal 1 adalah sebesar Rp 20.000.000 (Dua putuh juta rupiah) sudah termasuk pajak, sesuai Surat Keputusan Rektor Universitas Negeri Makassar Nomor : 366/UN36/HK/2020 tanggal 12 Mei 2020
- (2) Dana Penelitian sebagaimana dimaksud pada ayat (1) dibebankan pada Daftar Isian Pelaksanaan Anggaran (DIPA) Universitas Negeri Makassar Nomor : SP DIPA – 023.17.2.677523/2020, tanggal 29 April 2020

PASAL 3 TATA CARA PEMBAYARAN DANA PENELITIAN

- (1) **PIHAK PERTAMA** memberikan pendanaan penelitian sebesar: **Rp.20.000.000** (*Dua puluh juta rupiah*) (jumlah keseluruhan) yang dibebankan kepada DIPA Universitas Negeri Makassar.
- (2) Pendanaan penelitian sebagaimana dimaksud pada ayat (1) dibayarkan oleh **PIHAK PERTAMA** kepada **PIHAK KEDUA** secara bertahan:
 - a. Pembayaran Tahap Pertama sebesar 70% dari total dana penelitian yaitu 70% X Rp.20.000.000 .- = Rp.14.000.000 .- (Empat belas juta rupiah) yang akan dibayarkan oleh PIHAK PERTAMA kepada PIHAK KEDUA setelah PIHAK KEDUA telah melengkapi proposal penelitian yang memuat judul penelitian, pendekatan dan metode penelitian yang digunakan, data yang akan diperoleh, anggaran yang akan digunakan, dan tujuan penelitian berupa luaran yang akan dicapai dan setelah Kontrak Penelitian ini ditandatangani oleh kedua belah pihak.

b. Pembayaran Tahap Kedua sebesar 30% dari total dana penelitian yaitu 30% X Rp.20.000.000 .- = Rp.6.000.000 .- (Enam juta rupiah) setelah menyerahkan Laporan Lengkap Penelitian dan Luaran Wajib Penelitian ke Lembaga Penelitian dan Pengabdian kepada Masyarakat (LP2M) Universitas Negeri Makassar

(3) Pendanaan Kontrak Penelitian sebagaimana dimaksud pada ayat (1) akan disalurkan oleh **PIHAK PERTAMA** kepada **PIHAK KEDUA** ke rekening sebagai berikut:

Nama pada rekening

: SITTI RAHMA YUNUS

Nomor Rekening

: 809483885

Nama Bank

: Bank BNI

(4) PIHAK PERTAMA tidak bertanggung jawab atas keterlambatan dan/atau tidak terbayarnya sejumlah dana yang disebabkan karena kesalahan PIHAK KEDUA dalam menyampaikan data peneliti, nama bank, nomor rekening, dan persyaratan lainnya yang tidak sesuai dengan ketentuan.

PASAL 4 JANGKA WAKTU

Jangka waktu pelaksanaan penelitian sebagaimana dimaksud dalam Pasal 1 sampai selesai 100%, adalah paling lambat tanggal **30 November 2020**

PASAL 5 TARGET LUARAN

- (1) **PIHAK KEDUA** berkewajiban untuk mencapai target luaran wajib penelitian sebagaimana yang dijanjikan dalam proposal penelitian
- (2) **PIHAK KEDUA** berkewajiban untuk melaporkan perkembangan pencapaian target luaran sebagaimana dimaksud pada ayat (1) kepada **PIHAK PERTAMA**

PASAL 6 HAK DAN KEWAJIBAN PARA PIHAK

- (1) Hak dan Kewajiban PIHAK PERTAMA:
 - a. PIHAK PERTAMA berkewajiban untuk memberikan dana penelitian kepada PIHAK KEDUA dengan jumlah sebagaimana dimaksud dalam Pasal 2 ayat (1) dan dengan tata cara pembayaran sebagaimana dimaksud dalam Pasal 3.
 - b. PIHAK PERTAMA berhak untuk mendapatkan dari PIHAK KEDUA luaran penelitian sebagaimana dimaksud dalam Pasal 5;
 - c. PIHAK PERTAMA berhak untuk mendapatkan dari PIHAK KEDUA Hardcopy dan Softcopy Laporan Akhir, Surat Pernyataan Tanggungjawab Belanja (SPTB), luaran wajib, dan luaran tambahan penelitian.

- (2) Hak dan Kewajiban PIHAK KEDUA:
 - a. PIHAK KEDUA berhak menerima dana penelitian dari PIHAK PERTAMA dengan jumlah sebagaimana dimaksud dalam Pasal 2 ayat (1);
 - b. **PIHAK KEDUA** berkewajiban untuk bertanggungjawab dalam penggunaan dana penelitian yang diterimanya sesuai dengan proposal kegiatan yang telah disetujui;
 - PIHAK KEDUA berkewajiban mengikuti seminar hasil penelitian baik Nasional maupun Internasional;
 - d. **PIHAK KEDUA** berkewajiban menyerahkan *Hardcopy* dan *softcopy* Laporan Akhir Penelitian, Surat Pernyataan Tanggungjawab Belanja (SPTB), Luaran Wajib dan Luaran Tambahan Penelitian kepada **PIHAK PERTAMA**, paling lambat <u>30 November 2020</u> sebanyak 2 (dua) eksempelar ke LP2M UNM.

PASAL 7 LAPORAN PELAKSANAAN PENELITIAN

- (1) **PIHAK KEDUA** berkewajiban untuk menyampaikan kepada **PIHAK PERTAMA** berupa laporan akhir, luaran penelitian dan Surat Pernyataan Tanggungjawab Belanja (SPTB) sesuai dengan jumlah dana yang diberikan oleh **PIHAK PERTAMA** yang tersusun secara sistematis sesuai pedoman yang ditentukan oleh **PIHAK PERTAMA**.
- (2) Laporan Akhir/hasil Penelitian sebagaimana dimaksud dalam Pasal 6 ayat (2.d) harus memenuhi ketentuan sebagai berikut:
 - a. Bentuk/ukuran kertas A4 ditulis dalam format font Times New Romans Ukuran 12 Spasi 1,5;
 - b. Warna sampul muka Coklat Tua dan Cetak Punggung
 - c. Di bawah bagian cover ditulis:

Dibiayai oleh:

DIPA Universitas Negeri Makassar Nomor: SP DIPA – 023.17.2.677523/2020, tanggal 29 April 2020 Sesuai Surat Keputusan Rektor Universitas Negeri Makassar Nomor: 366/UN36/HK/2020 tanggal 12 Mei 2020

PASAL 8 MONITORING DAN EVALUASI

PIHAK PERTAMA dalam rangka pengawasan akan melakukan Monitoring dan Evaluasi Internal pada bulan Oktober 2020 terhadap kemajuan pelaksanaan Penelitian Tahun Anggaran 2020.

PASAL 9 PENILAIAN LUARAN

Penilaian luaran penelitian dilakukan oleh Komite Penilai/Reviewer Luaran sesuai dengan ketentuan yang berlaku.

PASAL 10 PERUBAHAN SUSUNAN TIM PELAKSANA DAN SUBSTANSI PELAKSANAAN

Perubahan terhadap susunan tim pelaksana dan substansi pelaksanaan Penelitian ini dapat dibenarkan apabila telah mendapat persetujuan tertulis dari Ketua Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LP2M) Universitas Negeri Makassar.

PASAL 11 PENGGANTIAN KETUA PELAKSANA

- (1) Apabila **PIHAK KEDUA** selaku ketua pelaksana tidak dapat melaksanakan Penelitian ini, maka **PIHAK KEDUA** wajib mengusulkan pengganti ketua pelaksana yang merupakan salah satu anggota tim kepada **PIHAK PERTAMA**.
- (2) Apabila **PIHAK KEDUA** tidak dapat melaksanakan tugas dan tidak ada pengganti ketua sebagaimana dimaksud pada ayat (1), maka **PIHAK KEDUA** harus mengembalikan dana penelitian kepada **PIHAK PERTAMA** yang selanjutnya disetor ke Kas Negara.
- (3) Bukti setor sebagaimana dimaksud pada ayat (2) disimpan oleh PIHAK PERTAMA

PASAL 12 PEMBATALAN PERJANJIAN

- (1) Apabila dikemudian hari terhadap judul Penelitian sebagaimana dimaksud dalam Pasal 2 ditemukan adanya duplikasi dengan Penelitian lain dan/atau ditemukan adanya ketidakjujuran, itikad tidak baik, dan/atau perbuatan yang tidak sesuai dengan kaidah ilmiah dari atau dilakukan oleh PIHAK KEDUA, maka perjanjian Penelitian ini dinyatakan batal dan PIHAK KEDUA wajib mengembalikan dana penelitian yang telah diterima kepada PIHAK PERTAMA yang selanjutnya akan disetor ke Kas Negara.
- (2) Bukti setor sebagaimana dimaksud pada ayat (1) disimpan oleh PIHAK PERTAMA.

PASAL 13 PAJAK-PAJAK

Hal-hal dan/atau segala sesuatu yang berkenaan dengan kewajiban pajak berupa

- a. Pembelian barang dan jasa dikenai PPN sebesar 10% dan PPh 22 sebesar 1.5%
- b. Belanja honorarium PPh Pasal 21 sebesar: 5% bagi yang memiliki NPWP untuk golongan III, untuk golongan IV sebesar 15% dan 6% bagi yang tidak memiliki NPWP
- c. Pajak-pajak lain sesuai ketentuan

menjadi tanggungjawab **PIHAK KEDUA** dan harus dibayarkan oleh **PIHAK KEDUA** kekantor pelayanan pajak setempat sesuai ketentuan yang berlaku.

PASAL 14 KEKAYAAN INTELEKTUAL

- (1) Hak kekayaan Intelektual yang dihasilkan dari pelaksanaan penelitian diatur dan dikelola sesuai dengan peraturan dan perundang-undangan
- (2) Setiap publikasi, makalah, dan/atau ekspos dalam bentuk apapun yang berkaitan dengan hasil penelitian ini wajib mencantumkan Universitas Negeri Makassar
- (3) Hasil penelitian berupa peralatan adalah milik Negara dan dapat dihibahkan kepada institusi/lembaga melalui Berita Acara Serah Terima (BAST)

PASAL 15 PERALATAN DAN/ALAT HASIL PENELITIAN

Hasil Pelaksanaan Penelitian ini yang berupa peralatan dan/atau alat yang dibeli dari pelaksanaan Penelitian ini adalah milik Negara yang dapat dihibahkan kepada Universitas Negeri Makassar sesuai dengan ketentuan peraturan perundangan

PASAL 16 KEADAAN KAHAR

- (1) PARA PIHAK dibebaskan dari tanggung jawab atas keterlambatan atau kegagalan dalam memenuhi kewajiban yang dimaksud dalam Kontrak Penelitian disebabkan atau diakibatkan oleh peristiwa atau kejadian diluar kekuasaan PARA PIHAK yang dapat digolongkan sebagai keadaan memaksa (force majeure).
- (2) Peristiwa atau kejadian yang dapat digolongkan keadaan memaksa (force majeure) dalam Kontrak Penelitian ini adalah bencana alam, wabah penyakit, kebakaran, perang, blockade, peledakan, sabotase, revolusi, pemberontakan, huru-hara, serta adanya tindakan pemerintah dalam bidang ekonomi dan moneter yang secara nyata berpengaruh terhadap pelaksanaan Kontrak Penelitian ini.
- (3) Apabila terjadi keadaan memaksa (force majeure) maka pihak yang mengalami wajib memberitahukan kepada pihak lainnya secara tertulis, selambat-lambatnya dalam waktu 7 (tujuh) hari kerja sejak terjadinya keadaan memaksa (force majeure), disertai dengan bukti-bukti yang sah dari pihak yang berwajib, dan PARA PIHAK dengan itikad baik akan segera membicarakan penyelesaiannya.

PASAL 17 PENYELESAIAN PERSELISIHAN

- (1) Apabila terjadi perselisihan antara PIHAK PERTAMA dan PIHAK KEDUA dalam pelaksanaan Kontrak Penelitian ini akan dilakukan penyelesaian secara musyawarah dan mufakat,
- (2) Dalam hal tidak tercapai penyelesaian secara musyawarah dan mufakat sebagaimana dimaksud pada ayat (1) maka penyelesaian dilakukan melalui proses hukum yang berlaku dengan memilih domisili hukum di Pengadilan Negeri.

PASAL 18 AMANDEMEN KONTRAK

Apabila terdapat hal lain yang belum diatur atau terjadi perubahan dalam Kontrak Penelitian ini, maka akan dilakukan Amandemen Kontrak Penelitian

PASAL 19 SANKSI

- (1) Apabila sampai dengan batas waktu yang telah ditetapkan untuk melaksanakan Kontrak Penelitian telah berakhir, PIHAK KEDUA tidak melaksanakan kewajiban sebagaimana dimaksud dalam Pasal 6 ayat (2), maka PIHAK KEDUA dikenai sanksi administratif;
- (2) Sanksi administratif sebagaimana dimaksud pada ayat (1) dapat berupa penghentian pembayaran dan Ketua Tim Pelaksana Penelitian tidak dapat mengajukan proposal penelitian dalam kurun waktu dua tahun berturut-turut.

PASAL 20 LAIN-LAIN

- (1) PIHAK KEDUA menjamin bahwa penelitian dengan judul tersebut di atas belum pernah dibiayai dan/atau diikut sertakan pada Pendanaan Penelitian lainnya, baik yang diselenggarakan oleh instansi, lembaga, perusahaan atau yayasan, baik di dalam maupun di luar negeri.
- (2) Segala sesuatu yang belum cukup diatur dalam Perjanjian ini dan dipandang perlu diatur lebih lanjut dan dilakukan perubahan oleh PARA PIHAK, maka perubahanperubahannya akan diatur dalam perjanjian tambahan atau perubahan yang merupakan satu kesatuan dan bagian yang tidak terpisahkan dari Perjanjian ini.

PASAL 21 PENUTUP

Kontrak Penelitian ini berlaku sejak tanggal ditandatangani, dibuat dalam rangkap 3 (tiga), memiliki kekuatan hukum yang sama, bermaterai cukup, dan biaya materai dibebankan kepada PIHAK KEDUA

PIHAK PERTAMA

PIHAK KEDUA

Prof. Dr. Ir. H. Bakhrani A. Rauf, M.T

NIP: 196110161988031006

Sitti Rahma Yunus, S.Pd., M.Pd NIP: 198607172014042001

14 Mei 2020

Lampiran 2 Surat Ijin Penelitian

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI MAKASSAR (UNM)

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT (LP2M)

Menara Pinisi UNM Lt. 10 Jalan A. Pangerang Pettarani, Makassar Telepon: 0411-865677 Fax. 0411-861377

Laman: www.unm.ac.id Email: lppm@unm.ac.id & lemlitunm@yahoo.co.id

Nomor : 1782/UN36.11/LP2M/2020

Lampiran : Satu berkas Perihal : Izin Penelitian

Yth. Dekan FMIPA UNM

di Tempat

Dalam rangka Pelaksanaan Program Penelitian PNBP Universitas Negeri Makassar Tahun Anggaran 2020 pada Lembaga Penelitian dan Pengabdian kepada Masyarakat (LP2M UNM), dengan hormat disampaikan bahwa ketua peneliti yang tersebut dibawah ini:

Nama : Sitti Rahma Yunus, S.Pd., M.Pd

NIP : 198607172014042001

Fakultas : FMIPA UNM

Akan melakukan penelitian dengan judul:

"Analisis Hubungan Antara Kemampuan Multiple Representasi dan Literasi Sains Calon Guru IPA Berdasarkan Gaya Belajar"

Skema Penelitian : Penelitian PNBP FMIPA UNM T.A. 2020

Lokasi Penelitian : FMIPA UNM

Anggota Tim Peneliti : Dr. Muh. Tawil, M.S., M.Pd & Dr. Nurhayani Haji Muhiddin,

M.Si

Pelaksanaannya direncanakan selama 7 (tujuh) bulan Mei s.d. November 2020

Sehubungan dengan hal tersebut diatas, dimohon kiranya yang bersangkutan dapat diberikan izin penelitian.

MOIRANKetua,

Atas perhatian dan kerjasama yang baik diucapkan terima kasih

Prof. Dr. Jr. H. Bakhrani A. Rauf, M.T. NH. 19611016 198803 1006

Tembusan Rektor UNM (sebagai laporan)

Lampiran 3 Surat Keterangan Penelitian

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI MAKASSAR (UNM) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

PROGRAM STUDI PENDIDIKAN IPA

Alamat: Jalan Mallengkeri Makassar Telepon: 0411-864936 Fax. 0411-880568 Laman: http://pend-ipa.unm.ac.id/ Email: ppipa@unm.ac.id/

SURAT KETERANGAN

Nomor: 227/UN36.1.IPA/PL/2020

Kepada Yth, Bapak Ketua Lembaga Penelitian UNM

di Makassar

Dengan Hormat,

Segala puji bagi Allah SWT atas Rahmat dan Karunia-Nya. Salam dan Sholawat Kepada Nabiullah Muhammad SAW beserta Sahabat dan Keluarga Beliau.

Menindaklanjuti surat Lembaga Penelitian UNM nomor: 1782/UN36.11/LP2M/2020 tanggal 14 Mei 2020 terkait dengan izin penelitian yang dilaksanakan oleh Sitti Rahma Yunus, S.Pd., M.Pd., Dr. Muh. Tawil, M.S., M.Pd., dan Dr. Nurhayani H. Muhiddin, M.Si. dengan judul penelitian: "Analisis Hubungan antara Kemampuan Multiple Representasi dan Literasi Sains Calon Guru IPA Berdasarkan Gaya Belajar". SKIM Penelitian PNBP. Lokasi Penelitian Prodi Pendidikan IPA FMIPA UNM Makassar. Anggota Penelitian. Telah melaksanakan penelitian dan pengambilan data sesuai yang direncanakan selama 2 dua (bulan).

Demikian surat keterangan ini kami berikan untuk dapat dipergunakan sebagaimana mestinya dan apabila terdapat kekeliruan akan diperbaiki sebagaimana mestinya.

Makassar, 25 November 2020 Kutua Prodi Pendidikan IPA FMIPA LINM

Dr. Hj. Ramlawati, M.Si. NIP. 19651231 199103 2 007

Lampiran 4 Instrumen Penelitian

1. Instrumen Tes Diagnostik Gaya Belajar

ANGKET GAYA BELAJAR

	ANGKET GAYA BELAJAK
Nama	:
Nim	:
Angkatan	:
A. B.	berbicara, Anda: Berbicara dengan tempo cepat Berbicara dengan tempo sedang Berbicara dengan tempo lambat
2. Apa ya	ing paling anda ingat?
B.	Orang, lingkungan, wajah Perkataan, suara, makna Kejadian, peristiwa, emosi
A. B.	nana cara anda menghapal? Menulisnya berulang-ulang Mengulangi kata-kata sekeras mungkin Menghapalnya sambil berjalan-jalan
4. Apa	akah yang bisa membuat anda terganggu?
B.	Benda-benda di sekitar anda Suara Gerakan
5. Ket	ika mengeja sebuah kata, yang anda lakukan adalah
B.	Membayangkan kata itu Menyebutnya dengan keras MenuliskannyaS
Apaka	ah yang lebih anda sukai?
E.	Lukisan Musik Menari/ olahraga

- 6. Ketika mendapat petunjuk cara passing, apa yang lebih anda sukai?
 - A. Diberi gambar untuk ditirukan
 - B. Diberi tahu dengan kata-kata begaimana cara melakukannya
 - C. Diberi contoh untuk diperagakan secara langsung
- 7. Mana yang lebih sering anda katakan?
 - A. Kelihatannya bagus
 - B. Kedengarannya bagus
 - C. Rasanya enak
- 8. Ketika membaca, apa yang anda lakukan?
 - A. Melihat bacaan sambil membaca dalam hati
 - B. Membaca dengan bersuara
 - C. Menggunakan jari untuk menunjuk bagian yang dibaca
- 9. Ketika ingat pasar, apa yang pertama kali muncul dalam pikiran anda?
 - A. Pemandangan tentang orang-orang yang berbelanja dan barang-barang yang diperjualbelikan
 - B. Ramainya suara orang-orang di pasar
 - C. Orang-orang yang hilir mudik dan lalu lalang di pasar
- 10. Ketika akan tidur, apa yang terpenting buat anda?
 - A. Kamar yang gelap/ samar/ terang
 - B. Kamar yang tenang tidak berisik
 - C. Tempat tidur yang nyaman

SUMBER: proprof.com

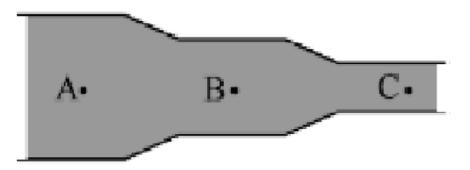
2. Instrumen Tes Kemampuan Representasi

Tes diberikan melalui google form

27/11/2020

UJIAN AKHIR SEMESTER MT. KULIAH FLUIDA/FLUIDS (2 JUNI 2020)

UJIAN AKHIR SEMESTER MT. KULIAH FLUIDA/FLUIDS (2 JUNI 2020)

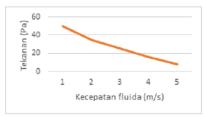

SOAL PILIHAN GANDA

Petunjuk: Pilih jawaban yang tepat pada opsi jawaban yang telah disediakan

1.	Nama Mahasiswa
2.	NIM
3.	Kelas

27/11/2020

4. Fluida mengalir melalui pipa dengan luas penampang berbeda seperti gambar 1 point



Pernyataan yang benar berikut ini adalah

	Kecepatan aliran fluida terbesar di titik A
\subset	Kecepatan aliran fluida terbesar di titik B
	Kecepatan aliran fluida terbesar di titik C
	Kecepatan aliran fluida terbesar di titik A dan C
	Kecepatan aliran fluida sama di semua titik

27/11/2020

5. Berikut ini adalah grafik yang menunjukkan hubungan antara kecepatan aliran 1 point fluida dengan tekanan suatu fluida.

Pernyataan yang tepat sesuai grafik adalah ... *Mark only one oval.*

- Kecepatan aliran fluida berbanding terbalik dengan tekanan

 Kecepatan aliran fluida berbanding lurus dengan tekanan
- Semakin besar kecepatan fluida maka tekanan akan semakin meningkat
- Semakin kecil kecepatan fluida maka tekanan akan semakin menurun
- Kecepatan aliran fluida tidak berhubungan dengan tekanan

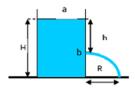
1 point

27/11/2020

6. Sebuah pipa dengan luas penampang berbeda dialiri oleh suatu fluida. Pipa tersebut tidak bocor sehingga jumlah massa fluida yang mengalir per satuan waktu pada kedua penampang pipa selalu sama. Menurut persamaan kontinuitas, debit aliran fluida dari kedua penampang pipa selalu sama. Hal ini mengakibatkan kecepatan aliran fluida pada penampang besar akan lebih lambat dibandingkan dengan kecepatan aliran fluida pada pipa berpenampang kecil. Persamaan di bawah ini yang sesuai dengan pernyataan tersebut adalah...

Mark only one oval.

$$\frac{v_1}{v_2} = \frac{A_1}{A_2}$$
 $\frac{v_1}{v_2} = \frac{A_2}{A_1}$
 $\frac{v_1}{A_1} = \frac{v_2}{A_2}$ $A_1 = \frac{A_2 v_1}{v_2}$
 $A_1 = \frac{A_1 v_1}{v_2}$

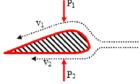

https://docs.google.com/forms/d/15TLUtpg4I2OQFId-XB-q-IVQwASuExsgoHyOJehvL2c/edit

	E	
7.	Suatu bejana diisi air setinggi 2 meter dan berada pada lantai mendatar. Dinding bejana memiliki 3 (tiga) lubang kecil A, B, dan C yang tingginya berbeda-beda. Lubang C berjarak 50 cm dari dasar, lubang A berjarak 50 cm dari permukaan air dan jarak antar lubang juga 50 cm. Ketinggian air dijaga tetap 2 meter dan ketika lubang-lubang pada dinding bejana dibuka, air memancar dari masing-masing lubang sejauh xA, xB, dan xC. Pernyataan yang benar adalah	1 point
	Mark only one oval.	
	\bigvee vA = vB = vC	
	VA = VB < VC	
	\bigvee vA = vB > vC	

UJIAN AKHIR SEMESTER MT. KULIAH FLUIDA/FLUIDS (2 JUNI 2020)

27/11/2020

8. Jika air memancar keluar dari titik b, maka R akan mencapai maksimum pada 1 point saat



Mark only one oval.

- h = ¼ H
- h = 3/8 H
- ____ h = ½ H
- h = ¾ H
- ____ h = H
- 9. Perhatikan gambar berikut. Gaya angkat pesawat akan muncul jika....

1 point

58

- P1 = P2 dan V1 = V2
- P1 < P2 dan V1 > V2
- P1 < P2 dan V1 < V2
- P1 > P2 dan V1 > V2
- P1 > P2 dan V1 < V2

27/11/2020

10. Persamaan Bernoulli dirumuskan sebagai berikut.

1 point

$$P_{_{\!A}} + \ \rho g h_{_{\!A}} + \ {\scriptstyle \frac{1}{2}} \rho v_{_{\!A}}{}^2 = \ P_{_{\!B}} + \ \rho g h_{_{\!B}} + \ {\scriptstyle \frac{1}{2}} \ \rho v_{_{\!B}}{}^2$$

Jika PA dan PB = Tekanan udara luar, vA = 0, maka pernyataan yang tepat adalah

Mark only one oval.

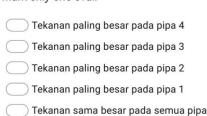
Kecepatan fluida di titik B hanya bergantung pada tinggi titik B dari dasar permukaan

Kecepatan fluida di titik B hanya bergantung pada percepatan gravitasi

Kecepatan fluida di titik B bergantung pada selisih ketinggian titik A dan B

Kecepatan fluida di titik B bergantung pada percepatan gravitasi dan ketinggian titik B dari dasar permukaan

Kecepatan fluida di titik B bergantung pada percepatan gravitasi dan selisih ketinggian A


11. Perhatikan gambar berikut.

dan B

1 point

Pernyataan yang tepat sesuai gambar adalah

27/11/2020

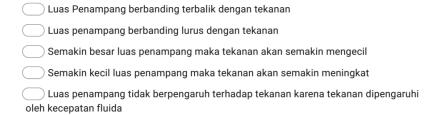
12. Persamaan kontinuitas dirumuskan sebagai berikut.

1 point

$$Q_1 = Q_2$$

$$A_1 v_1 = A_2 v_2$$

Dari persamaan di atas, pernyataan berikut yang tepat adalah


Fluida yang mengalir pada luas penampang besar akan memiliki debit yang besar karena kecepatan fluida juga besar
Fluida yang mengalir pada luas penampang besar akan memiliki debit yang kecil karena kecepatan fluida kecil
Fluida yang mengalir pada luas penampang kecil akan memiliki debit yang besar karena kecepatan fluida juga besar
Fluida yang mengalir pada luas penampang kecil akan memiliki debit yang kecil karena kecepatan fluida juga kecil
Fluida yang mengalir pada luas penampang besar akan memiliki debit yang sama dengan luas penampang kecil

Berikut ini adalah grafik yang menunjukkan hubungan antara luas penampang 1 point pipa dengan tekanan suatu fluida.

Pernyataan yang tepat sesuai grafik adalah ...

Mark only one oval.

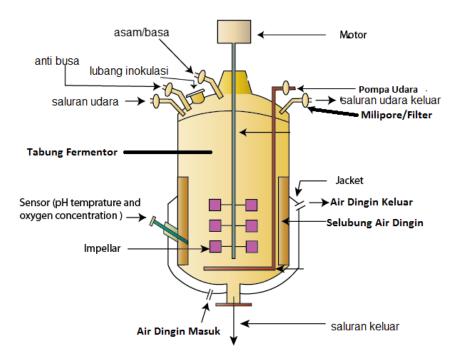
UJIAN AKHIR SEMESTER MT. KULIAH FLUIDA/FLUIDS (2 JUNI 2020)

SOAL ISIAN

14. Nomor 1

- 1. <u>Suatu fluida dipaksa melalui sebuah pipa dengan luas penampangnya berbeda-beda</u> disimbolkan dengan penampang A, B, C, dan D. Luas penampang pertama, penampang A, adalah 20 cm². Luas penampang B, C, dan D berturut-turut adalah 12 cm², 8 cm² dan 5 cm².
 - a) Gambarkan skema pipa tersebut!
 - b) Jika fluida dialirkan melalui pipa A dengan kecepatan v_A = 10 m/s, maka tentukan v_B , v_C , dan v_D!
 - Gambarkan grafik hubungan antara luas penampang pipa dengan kecepatan air yang mengalir pada pipa tersebut!
 - Gambarkan grafik hubungan antara luas penampang pipa dengan tekanan pada pipa tersebut!
 - e) Tuliskan kesimpulan dari grafik (c) dan (d)!

Files submitted:


3. Instrument Tes Literasi Sains

TES ILMU PENGE	ETAHUAN ALAM
Nama NIM Hari, tanggal Kelas/Angkatan	: : :

PABRIK PENISILIN

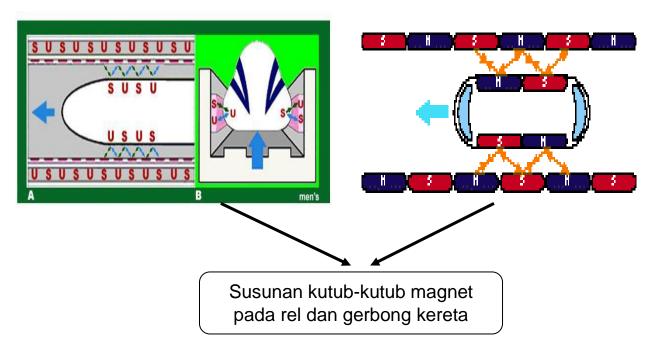
Sir Alexander Fleming adalah orang yang dikenal sebagai penemu penisilin (antibiotik untuk melawan bakteri). Alexander Fleming sangat pandai, tetapi ceroboh dan laboratoriumnya sering terlihat berantakan. Tahun 1928, setelah pulang dari liburan panjang, Fleming teringat akan bakteri-bakteri di piringan laboratorium lupa disimpan baikbaik, dan telah terkontaminasi dengan sejenis jamur. Beberapa piring laboratorium yang berisikan bakteri dibuang, tetapi kemudian Fleming memperhatikan bahwa perkembangan bakteri pada daerah yang terkontaminasi oleh jamur tersebut menjadi terhambat. Fleming kemudian mengambil sampel dari jamur tersebut dan menelitinya, dia menemukan bahwa jamur tersebut berasal dari genus *Penicillium*. Inilah sebabnya mengapa obat tersebut bernama *penicillin* atau penisilin (Indonesia).

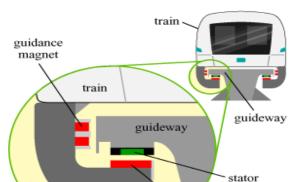
Pembuatan penisilin dilakukan di dalam suatu alat yang bernama Fermentor (Bioreaktor). Fermentor adalah tangki atau wadah yang di dalamnya seluruh sel (mikroba) mengubah bahan dasar menjadi produk biokimia dengan atau tanpa produk sampingan. Rancangan dan kontruksi fermentor perlu diperhatikan agar dapat dioperasikan dalam jangka waktu lama, kondisi yang memadai untuk kelangsungan proses metabolik mikroba, sistem kontrol suhu, pH dan penambahan nutrien, bejana harus dapat dicuci dan disterilisasi.

Bagian-bagian dari fermentor

Pertanyaan 23.1 PABRIK PENISILIN

Salah satu bagian fermentor adalah Milipore. Apakah pernyataan berikut menunjukkan fungsi dari milipore? Lingkari "Ya" atau Tidak " untuk setiap pernyataan yang dianggap sesuai.


Fungsi Milipore	Ya atau Tidak?
Mencegah kontaminasi produk dari luar	Ya / Tidak
Menentukan jumlah mikroba dalam fermentor	Ya / Tidak
Mensterilkan produk yang dihasilkan	Ya / Tidak
Mensterilkan udara vang masuk	Ya / Tidak


Pertanyaan 23.2 PABRIK PENISILIN

Fermentor berfungsi untuk fermentasi. Pada fermentor terdapat bagian yang bernama selubung air dingin. Apa hubungan selubung air dingin dengan proses fermentasi?

Saat proses fermentasi, motor akan menggerakkan impellar sehingga suhu dalam wadah meningkat. Hal ini akan mempercepat fermentasi sehingga hasil akhir yang diperoleh tidak maksimal. Oleh karena itu, selubung air dingin diperlukan untuk mengatur dan mengontrol suhu di dalam wadah sehingga tidak merusak hasil fermentasi.

KERETA TERCEPAT DI DUNIA

MagLev adalah singkatan dari MAGnetically LEVitated trains yang terjemahan bebasnya adalah kereta api yang mengambang secara magnetis. Sering juga disebut kereta api magnet. Gambar di atas menunjukkan cara kerja elektromagnet pada kereta maglev. Elektromagnetik terdapat pada lengan kereta yang mengitari jalur penuntun (guideway) dan pada bagian bawah jalur penuntun. Ketika arus Istrik dikirim ke elektromagnet (kumparan medan), elektromagnet akan berubah menjadi magnet. Gaya tarik magnetik terarah ke atas dari magnet induksi mengimbangi berat dari kereta sehingga kereta bergerak tanpa menyentuh rel atau jalur penuntun.

Kereta Maglev mengambang kurang lebih 10 mm di atas rel magnetiknya. Dorongan ke depan dilakukan melalui interaksi antara rel dengan mesin induksi yang juga menghasilkan medan magnetik di dalam kereta. Pada saat kereta api dilevitasi, daya listrik diberikan ke kumparan di dalam dinding jalur pemandu / jalur penuntun (guideway) untuk membentuk suatu sistem unik medan magnet yang menarik dan mendorong kereta sepanjang jalur pemandu.

Arus listrik yang diberikan ke kumparan pada dinding jalur pemandu secara berganti-ganti mengubah polaritas kumparan magnet. Perubahan polaritas ini menyebabkan medan magnetik di depan kereta menarik kereta ke depan, sementara medan magnet di belakang kereta menambahkan gaya dorong ke depan. Kereta maglev mengambang di atas suatu lapisan udara sehingga menghilangkan gesekan. Tidak adanya gesekan serta rancangan aerodinamis kereta membuat kereta ini dapat mencapai kecepatan lebih dari 500 kilometer per jam.

Pertanyaan 24.1 : Kereta Tercepat di dunia

Bagaimana sifat elektromagnetik menggerakkan kereta maglev? lingkari "Ya" atau "Tidak" untuk penjelasan berikut ini.

Ya atau Tidak?
Ya / Tidak
Ya / Tidak
Ya / Tidak
Ya / Tidak

Pertanyaan 24.2 : Kereta tercepat di dunia

Seperti namanya, prinsip dari kereta api ini adalah memanfaatkan gaya angkat magnetik pada relnya sehingga terangkat sedikit ke atas, kemudian gaya dorong dihasilkan oleh motor induksi. Kereta ini mampu melaju dengan kecepatan sampai 650 km/jam (404 mpj) jauh lebih cepat dari kereta biasa.

Mengapa pada saat melaju, kereta maglev tidak menimbulkan suara berisik. Berikan dua alasannya!

- 1. tidak adanya gaya kontak berupa gaya gesek antar roda dan rel sehingga tidak menimbulkan suara bising
- 2. jika kereta berjalan di rel, sama seperti mobil dan motor yang bergerak di jalanan, maka kereta akan mengalami guncangan atau getaran dari permukaan rel yang dilalui sehingga perlu diredam dengan sistem suspensi. Namun, kereta Maglev tidak menyentuh permukaan permukaan rel dengan memanfaatkan elektromagnetik sehingga tidak menyebabkan guncangan yang bisa menimbulkan suara bising

Dalam pembakaran sempurna, unsur karbon akan bereaksi dengan unsur oksigen menghasilkan karbon dioksida

Pertanyaan 25.1 : KEBAKARAN

Manakah di antara gas berikut ini yang diperlukan dalam proses pembakaran?

- A. NaHCO₃
- B. CO₂
- C. CO
- D. O₂

Pertanyaan 25.2 : KEBAKARAN

Pada musim kemarau kita sering mendengar dan melihat berita kebakaran di TV. Petugas pemadam kebakaran selalu menyemprotkan air untuk memadamkan api tersebut, mengapa air dapat memadamkan api? Kebakaran bisa terjadi jika ada oksigen, bahan bakar dan panas. Jika salah satu dihilangkan maka kebakaaran bisa diatasi. Air yang disemprotkan ke api dapat menurunkan temperatur benda yang terbakar sehingga panas berkurang. Air juga dapat menutup akses antara bahan bakar dan oksigen sehingga kebakaran dapat dihentikan.

Instalasi listrik di rumah sebaiknya diperiksa secara berkala. Apabila ada kabel rapuh, sambungan atau stop kontak aus atau tidak rapat, segera gantilah dengan yang baru. Pemakaian kabel yang tidak sesuai dengan peruntukannya menyebabkan terbakarnya lapisan pembungkus kabel, pemasangan instalasi listrik yang kurang tepat dapat menimbulkan korsluiting listrik yang akan memicu terjadinya kebakaran, juga penumpukan steker pada salah satu stop kontak sering menimbulkan percikan api. Jika hal ini diabaikan, besar kemungkinan dapat terjadi kebakaran.

Pertanyaan 25.3 : MEMADAMKAN API

Jika terjadi kebakaran seperti pada gambar di atas, untuk memadamkan api tersebut menggunakan tabung gas pemadam kebakaran lebih efektif daripada menggunakan air, mengapa?

- A. Air dapat berperan sebagai isolator listrik.
- B. Air dapat berperan sebagai konduktor listrik.
- C. Gas CO₂ dalam tabung pemadam jika disemprotkan berbentuk busa.
- D. Gas CO_2 dalam tabung pemadam dapat mengisolasi O_2 di udara dengan api.

Penggorengan

Kebakaran pada penggorengan sering terjadi di Indonesia, khususnya ibu rumah tangga yang ceroboh meninggalkan penggorengan di atas kompor yang masih menyala. Untuk memadamkan api secara darurat pada peristiwa ini dapat menggunakan tutup panci yang ditutupkan ke wajan tersebut. Api dapat segera dipadamkan.

PERINGATAN: Minyak goreng panas kalau terbakar jangan disiram dengan air karena air dan minyak tidak akan bisa bersatu dan ini menyebabkan api bisa menjalar ke tempat lain dengan mudah

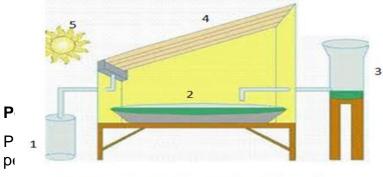
PERTANYAAN 25.4:KEBAKARAN

Untuk memadamkan api pada penggorengan yang terbakar, selain dengan tutup panci, kita dapat juga menyemprotkan gas dari tabung pemadam kebakaran, mengapa demikian?

Air tidak disarankan untuk memadamkan kebakaran yang disebabkan oleh minyak. Hal ini dikarenakan minyak memiliki massa jenis yang lebih kecil dibandingkan dengan air sehingga ketika minyak disiram dengan air maka minyak akan mengambang di atas air dan kontak dengan oksigen di udara. Jadi, menyiram air kepada penggorengan tidak disarankan. Namun, pemadam api dari gas misalnya dari CO2 lebih efektif memadamkan api yang berasal dari minyak. Hal ini dikarenakan massa jenis CO2 lebih besar dari oksigen sehingga gas CO2 yang disemprotkan pada sumber kebakaran akan mengisolasi/menghalangi dari oksigen. Selain itu, suhu gas CO2 relatif dingin bisa menurunkan suhu dari sumber kebakaran.

PENGOLAHAN AIR

Penyediaan air bersih bagi seluruh lapisan masyarakat masih merupakan satu masalah besar di Indonesia. Untuk mengatasi hal tersebut perlu dilakukan upaya untuk mendapatkan air bersih dari air keruh maupun air tawar dari air payau atau air laut. Kepulauan Indonesia berada di sekitar garis katulistiwa memiliki iklim tropis. Melimpahnya sinar matahari yang menyinari kepulauan Indonesia hampir sepanjang tahun dapat digunakan sebagai sumber energi. Energi matahari yang tersedia merupakan sumber energi yang murah dan dapat dimanfaatkan sebagai sumber energi alternatif. Salah satu bentuk pemanfaatan sumber daya matahari adalah upaya memanfatkan energi matahari untuk memproduksi air tawar dengan memanfaatkan energi panas dari matahari untuk penyulingan air laut.


Rancangan alat penyulingan yang dimaksud dapat diperlihatkan seperti gambar berikut.

Air Laut

Air Laut disedot dengan pompa

Gb. C Skema Rancangan Penyulingan air laut

Ket .

- 1 = bak penampungan air bersih hasil penyulingan 2 = penampungan air laut yang siap diuapkan
- 3 = sumber air/air laut
- 4 = Kaca pengembunan
- 5 = sumber panas matahari

menguap sebagian sehingga yang tersisa adalah larutan garam dengan konsentrasi lebih tinggi dari bak penampungan no 3. Hal ini disebabkan karena pada bak no 3 air laut yang ditampung memiliki konsentrasi garam lebih kecil karena konsentrasi air tawar sebagai pelarut lebih besar dibandingkan bak no 2.

Pertanyaan 26.2 Pengolahan air

Pada rancangan alat penyulingan air laut salah satu komponen yang sangat penting adalah kaca pengembunan. Kaca pengembunan dipasang dengan kemiringan tertentu. Salah satu alasan kaca pengembunan dipasang miring pada rancangan alat penyulingan air laut menjadi air bersih adalah

- A. kaca yang dipasang miring akan menimbulkan efek rumah kaca sehingga suhunya maksimal dan dapat mempengaruhi air laut menguap
- B. memungkinkan memperoleh air bersih yang lebih banyak karena kalau datar pengembunan air laut pada kaca jumlahnya lebih sedikit
- C. dengan kemiringan tertentu uap air yang mengembun lebih banyak mengalir menuju ke tempat penampungan yang telah disediakan

D. kemungkinan kaca pecah lebih kecil apabila dipasang miring dibandingkan kaca dipasang mendatar

Pertanyaan 26. 3 Pengolahan air

Proses penyulingan air laut menjadi air bersih layak minum tampak sederhana dan murah. Mengapa instalasi pengolahan air bersih seperti yang ditunjukkan pada diagram memerlukan biaya murah?

Karena jangan sampai biaya instalasi pengolahan air laut ini lebih besar dari pada membeli air tawar/bersih. Selain itu, pemasangan instalasi diharapkan sederhana dan murah sehingga diperlukan efisiensi instalasi yang menghasilkan air tawar dalam jumlah banyak.

Pertanyaan 26.4 Pengolahan Air

Apakah volume air yang dihasilkan dapat diprediksi stabil? Berikan penjelasan!

Tidak, karena intensitas cahaya matahari tidak bisa dipastikan. Jika cuaca cerah, maka penguapan akan berjalan lancar sehingga bisa dihasilkan air tawar dalam jumlah banyak.tetapi jika cuaca mendung atau tidak ada cahaya matahari maka jumlah air tawar yang dihasilkan juga akan lebih sedikit.

Lampiran 5 Data Hasil penelitian

Tabel Hasil Tes Kemampuan MR, Literasi Sains, Gaya Belajar

NO	Nama	Gaya Belajar	Literasi Sains	Multiple Representation
1	Desy Natalia Prastiwi	V	76.19	72
2	Nurul Khaerini	K	73.81	93
3	Sri Wahyuni	V	76.19	78
4	Salwa Nursyifa Sutrisno	V	75	87
5	Muhammad Rifai Alimuddin	V	75	95
6	Salfiana	V	77.38	85
7	Muh. Syaifullah	K	76.19	95
8	Krismeidiah	А	60.71	78
9	Nur Heni Febrianti	K	60.71	87
10	Asti Ayudia Pratiwi	V	71.43	85
11	Ratna Dewi	V	69.05	78
12	Harisa	K	78.57	90
13	Iis Nuriyah Prihartini	K	72.62	87
14	Arinil Mustaqimah Latif	V	71.43	87
15	Fadillah Febrianti	Α	60.71	78
16	Arman Lukman	А	78.57	95
17	Muh. Irzal Nur K	Α	78.57	80
18	Alfina Harmadani Idris	K	71.43	92
19	Ahmad Agung	Α	76.19	87
20	Miftahul Jannah	K	61.9	87
21	Taufiqurrahman	А	71.43	85
22	Fikha sulistiani	V	71.43	80
23	St. Aida Sufinasa	V	72.62	80
24	Fardha Tillah	V	71.43	75
25	Intan Hasliani	V	61.9	87
26	Milda	V	71.43	85
27	Kezia Yulnat Tangalayuk	А	60.71	85
28	Nurul Huda	V	71.43	72
29	Nadhia	V	71.43	80
30	Teguh Alfil Aulia	K	73.81	75
31	AYUSTIRA FADLY	V	66.67	80
32	NUR AZIZAH AWALIYAH B	V	76.19	85
33	SRI PURWATI TIYASTUTI	А	72.62	80
34	IRMAWATI MAPPIASSE	V	63.1	70
35	NURUL MAGHFIRA K	Α	39.29	75

36	MIRANDA S	V	63.1	83
37	FITRIAH	V	65.48	78
38	BASO MUHAMMAD SADJRI	٧	42.86	87
39	KHUSNUL FATIMAH IRFAN	K	53.57	90
40	AVIZAH BIN HAMZAH	Α	59.52	92
41	NIDYA NURAFIFAH MANSUR	V	59.52	90
42	SHELINI	Α	79.76	80
43	ADE ANISA	Α	75	80
44	AGUNG WAHYUDI	K	58.33	85
45	ANNISA MAULIDIA	K	39.29	78
46	MILA LANTI	V	53.57	78
47	MUHAMMAD MUAMMAR SAIFUL	V	39.29	87
48	FAUZIAH	Α	69.05	78
49	MUHAMMAD AKRAM	V	72.62	96
50	WIWIK	V	61.9	78
51	NURUL INAYYAH	V	39.29	85
52	AISYAH NOVIANTI	Α	60.71	95
53	PESTI	V	41.67	78
54	ANA AMALYA	Α	69.05	78
55	NUR MUTIA	V	64.29	78
56	RISKA TARUK KENDEK	Α	54.76	78
57	RIYANTI	Α	46.43	78
58	NURUL AZIZAH PUTRI	Α	63.1	87
59	MARWANA SUAIB	Α	69.05	95
60	FARKHAH INTAN ANASIS	Α	63.1	80

Lampiran 6 Analisis Data

1. Uji Normalitas

Model Description

Model Description				
Model Name		MOD_1		
Series or Sequence	1	MR		
Transformation		Natural logarithm		
Non-Seasonal Differe	ncing		0	
Seasonal Differencing			0	
Length of Seasonal Pe	eriod	No periodicity		
Standardization		Not applied		
	Туре	Normal		
Distribution	Location	estimated		
	Scale	estimated		
Fractional Rank Estim	Blom's			
Rank Assigned to Ties	Mean rank of tied			
Rank Assigned to Ties		values		

Applying the model specifications from MOD_1

Case Processing Summary

	Joseph John Mary	
		MR
Series or Sequence Length		60
١	Negative or Zero Before Log	0
Number of Missing Values in	Transform	U
the Plot	User-Missing	0
5	System-Missing	0

The cases are unweighted.

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of MR is normal with mean 83.37 and standard deviation 6.53.	One-Sample Kolmogorov- Smirnov Test	.041	Reject the null hypothesis.
2	The distribution of Literasi is norm with mean 65.36 and standard deviation 11.12.	naOne-Sample Kolmogorov- Smirnov Test	.053	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

2. Uji Korelasi

Correlations

00.1010.10110			
		MR	Literasi
	Pearson Correlation	1	.139
MR	Sig. (2-tailed)		.289
	N	60	60
	Pearson Correlation	.139	1
Literasi	Sig. (2-tailed)	.289	
	N	60	60

CORRELATIONS

/VARIABLES=MR Literasi /PRINT=TWOTAIL NOSIG /STATISTICS DESCRIPTIVES XPROD /MISSING=PAIRWISE.

Correlations

		MR	Literasi
	Pearson Correlation	1	.139
	Sig. (2-tailed)		.289
MR	Sum of Squares and Cross-products	2515.933	596.375
	Covariance	42.643	10.108
	N	60	60
Literasi	Pearson Correlation	.139	1

Sig. (2-tailed)	.289	
Sum of Squares and Cross- products	596.375	7300.014
Covariance	10.108	123.729
N	60	60

3. Uji korelasi berdasarkan gaya belajar visual

Nonparametric Tests

Votes

	Notes	
Output Created		28-NOV-2020 11:49:19
Comments		
	Active Dataset	DataSet3
	Filter	<none></none>
lam. st	Weight	<none></none>
Input	Split File	<none></none>
	N of Rows in Working Data	20
	File	29
		NPTESTS
		/ONESAMPLE TEST
		(Literasi MR)
Cuntav		/MISSING
Syntax		SCOPE=ANALYSIS
		USERMISSING=EXCLUDE
		/CRITERIA ALPHA=0.05
		CILEVEL=95.
D	Processor Time	00:00:00.17
Resources	Elapsed Time	00:00:00.12

[DataSet3]

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of Literasi is norm with mean 65.27 and standard deviation 11.49.	aOne-Sample Kolmogorov- Smirnov Test	.117	Retain the null hypothesis.
2	The distribution of MR is normal with mean 82.03 and standard deviation 6.33.	One-Sample Kolmogorov- Smirnov Test	.590	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

Descriptive Statistics

	Mean	Std. Deviation	N
Literasi	65.2721	11.48886	29
MR	82.0345	6.32728	29

Correlations

		Literasi	MR
	Pearson Correlation	1	050
	Sig. (2-tailed)		.798
Literasi	Sum of Squares and Cross- products	3695.827	-101.082
	Covariance	131.994	-3.610
	N	29	29
	Pearson Correlation	050	1
	Sig. (2-tailed)	.798	
MR	Sum of Squares and Cross- products	-101.082	1120.966
	Covariance	-3.610	40.034
	N	29	29

4. Uji Korelasi Berdasarkan Gaya Belajar Auditori

Nonparametric Tests

Notes

	Notes	
Output Created		28-NOV-2020 11:55:36
Comments		
	Active Dataset	DataSet4
	Filter	<none></none>
la a vit	Weight	<none></none>
Input	Split File	<none></none>
	N of Rows in Working Data	00
	File	20
		NPTESTS
		/ONESAMPLE TEST
		(Literasi MR)
0		/MISSING
Syntax		SCOPE=ANALYSIS
		USERMISSING=EXCLUDE
		/CRITERIA ALPHA=0.05
		CILEVEL=95.
	Processor Time	00:00:00.17
Resources	Elapsed Time	00:00:00.41

[DataSet4]

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision		
1	The distribution of Literasi is norm with mean 65.42 and standard deviation 10.71.	aOne-Sample Kolmogorov- Smirnov Test	.822	Retain the null hypothesis.		
2	The distribution of MR is normal with mean 83.20 and standard deviation 6.53.	One-Sample Kolmogorov- Smirnov Test	.073	Retain the null hypothesis.		

Asymptotic significances are displayed. The significance level is .05.

Correlation

Correlations

0011014110110				
		Literasi	MR	
Litorooi	Pearson Correlation	1	.279	
Literasi	Sig. (2-tailed)		.234	

	Sum of Squares and Cross- products	2178.084	370.394
	Covariance	114.636	19.494
	N	20	20
	Pearson Correlation	.279	1
	Sig. (2-tailed)	.234	
MR	Sum of Squares and Cross- products	370.394	811.200
	Covariance	19.494	42.695
	N	20	20

NEW FILE.

DATASET NAME DataSet5 WINDOW=FRONT.

EXECUTE.

*Nonparametric Tests: One Sample.

NPTESTS

/ONESAMPLE TEST (Literasi MR)

/MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE

/CRITERIA ALPHA=0.05 CILEVEL=95.

5. Uji korelasi berdasarkan gaya belajar kinestetik

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of Literasi is norm with mean 65.48 and standard deviation 11.94.	aOne-Sample Kolmogorov- Smirnov Test	.570	Retain the null hypothesis.
2	The distribution of MR is normal with mean 87.18 and standard deviation 6.10.	One-Sample Kolmogorov- Smirnov Test	.687	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

Correlations

[DataSet5]

Correlations				
	Literasi	MR		

	Pearson Correlation	1	.438
	Sig. (2-tailed)		.178
Literasi	Sum of Squares and Cross- products	1425.668	319.009
	Covariance	142.567	31.901
	N	11	11
	Pearson Correlation	.438	1
	Sig. (2-tailed)	.178	
MR	Sum of Squares and Cross- products	319.009	371.636
	Covariance	31.901	37.164
	N	11	11

Lampiran 7. Biodata ketua dan anggota tim pengusul

DAFTAR RIWAYAT HIDUP

4. Ketua Peneliti

1	Nama Lengkap	Sitti Rahma Yunus, S.Pd, M.Pd
2	Jenis Kelamin	Perempuan
3	Jabatan Fungsional	Asisten Ahli
4	NIP	19860717 201404 2 001
5	NIDN	0017078604
6	Tempat dan Tanggal Lahir	Soreang Majene/17 juli 1986
7	E-mail	sitti.rahma.yunus@unm.ac.id
8	No Telephone/Hp	081355457428
9	Alamat Kantor	Jl. Daeng Tata Kampus FMIPA UNM Parang Tambung Makassar
10	No Telepon/Faks	0411-864936/ Fax 0411-880568
11	Lulusan yang telah dihasilkan	S1 = orang, S2 = orang, S3 = orang
12	Mata Kuliah yang diampuh	Fisika Dasar
		Bahasa Inggris
		Fluida
		Zat dan Energi
		Gelombang dan Optik
		IPA sekolah
		Pembelajaran IPA
		Interaksi Antara Faktor-Faktor Fisik

A. Riwayat Pendidikan

S-1	S-2	S-3

Nama Perguruan	Universitas	Universitas Negeri	-
Tinggi	Negeri Makassar	Surabaya	
Bidang Ilmu	Pendidikan	Pendidikan Sains	-
	Fisika		
Tahun masuk-Lulus	2004-2008	2010-2013	-
Judul Skripsi/Tesis	Analisis hasil	Pengembangan	-
	belajar Fisikika	perangkat	
	melalui teknik	pembelajaran	
	inkuiri dengan	fisika berbasis	
	pendekatan	guided inquiry	
	outdoors physics	untuk	
	pada siswa kelas	menuntaskan hasil	
	II IPA SMA	belajar siswa	
	Negeri 1	dengan gaya	
	Tinambung	belajara auditorik	
		di SMA Negeri 18	
		Surabaya	
Nama	• Drs. Jarak	• Prof. Dr. Budi	-
Pembimbing/promotor	Patandean,	Jatmiko, M.Pd	
	M.Si	• Dr. I Gusti	
	• Dr. Subaer,	Made Sanjaya,	
	M.Phil, Ph.D	M.Si	

B. Pengalaman Penelitian Dalam 5 Tahun Terakhir

			Pendanaan	
No	Tahun	Judul Penelitian	Sumber	Jumlah (Juta
				Rp)
1	2014	Pengaruh pembelajaran	-	
		Multiple Representasi		

		terhadap hasil belajar calon		
		guru IPA pada mata kuliah		
		Interaksi antara faktor-		
		faktor fisik		
2	2014	Identifikasi peserta didik	-	
		berdasarkan aspek sikap dan		
		hubungannya dengan hasil		
		belajar fisika peserta didik		
		berdasarkan instrumen		
		CLASS di SMP		
		Kalebarembeng		
3	2015	Implementasi Pembelajaran	PNBP	RP.
		Guided Inquiry Pada Mata	FMIPA	8.000.000
		Kuliah Interaksi Antara	UNM	
		Faktor-Faktor Fisik Untuk		
		Calon Guru Ipa		
4	2016	Pengaruh pembelajaran	PNBP	RP.
		Guided Inquiry terhadap	FMIPA	8.000.000
		Kemampuan Multiple	UNM	
		Representations (MRs)		
		Calon Guru IPA pada Materi		
		Gelombang.		
5	2017	Upaya meningkatkan	PNBP	Rp
		kompetensi mahasiswa	FMIPA	20.000.000
		calon guru IPA	UNM	
		mengembangkan Perangkan		
		dan Melaksanakan		
		Pembelajaran Berbasis		
		Kurikulum 2013 melalui		

		Pembelajaran Kooperatif		
		Tipe Jigsaw		
6	2017	Pengembangan Program	PNBP	Rp
		Perkuliahan Asesmen	Pasca	27.000.000
		Pembelajaran Kimia	UNM	
		Berbasis Blended Learning		
		untuk melatih keterampilan		
		membuat berbagai jenis		
		asesmen		

C. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No	Tahun	Judul Pengabdian	Pendanaan	
110	Turion	kepada masyarakat	Sumber	Jumlah (Juta Rp)
1	2015	IbM English Short	MANDIRI	
		Course pada		
		Komunitas Peneliti		
		(KOPEL) Fisika		
2	2015	IbM Ibu-ibu	PNBP 2015	Rp 8.500.000
		Nelayan Galesong		
		(Pelatihan		
		diversifikasi ikan		
		menjadi berbagai		
		macam olahan		
		ikan).		
3	2016	IbM MGMP IPA	PNBP 2016	Rp 7.000.000
		Kabupaten		
		Bantaeng		
4	2017	IbM Guru SMPN	PNBP 2017	Rp 10.000.000
		26 Makassar		

D. Publikasi Artikel Ilmiah dalam jurnal dalam 5 tahun terakhir

N	Judul Artikel Ilmiah	Nama	Volume/Nomor/
О		Jurnal	Tahun
1	Implemetasi pembelajaran Fisika	JPII	volume 2/ April
	berbasis guided inquiry untuk	(Jurnal	2013
	siswa dengan gaya belajar	Pendidika	
	auditorik.	n IPA	
		Indonesia)	
2	Penerapan Pembelajaran Berbasis	Jurnal	Jilid 11 no 2,
	Guided Inquiry Terhadap Hasil	Sains dan	Agustus 2015
	Belajar Calon Guru IPA Pada Mata	Pendidika	
	Kuliah Interaksi Antara Faktor-	n Fisika	
	Faktor Fisik	(JSPF)	
3	Pengaruh Penggunaan Metode	Jurnal IPA	Vol 1, No,
	Mind Mapping pada Model	Terpasu	September 2017
	pembelajaran Kooperatif Tipe	(JIT)	
	NHT(Number Head Together)		
	terhadap Keterampilan Berpikir		
	Kreatif dan Hasil Belajar IPA		
	Peserta Didik kelas VII SMPN 6		
	Watampone.		
	Pengembangan Asesmen Proyek	SAINSM	1/VII/Maret/201
	Dalam Pembelajaran Fisika". http://dx.doi.org/10.2685/sainsmat 7164742018	AT	8
	1101/172010		

E. Pemakalah Ilmiah (Oral Presentation) dalam 5 tahun Terakhir

No	Nama Pertemuan	Judul Artikel Ilmiah	Waktu dan
	Ilmiah/Seminar		Tempat

te of
of
013
-
Bali
-
Bali
er
er oaya
_

		calon guru calon guru	
		IPA pada mata kuliah	
		Interaksi antara faktor-	
		faktor fisik	
6	Seminar Nasional	Desain media	22 Januari
	Fisika	pembelajaran untuk	2015,
		meningkatkan	Universitas
		pemahaman konsep	Negeri
		fisika net generation	Makassar
			Indonesia
7	Seminar Nasional	Desain pengembangan	22 Januari
	Fisika	Physics Attitude Survey	2015,
		Instrument (PASI)	Universitas
		untuk mengukur sikap	Negeri
		siswa terhadap Fisika	Makassar
		(Kajian Teori).	Indonesia
8	International	Implementation of	9 & 10 Oktober
	Conference ICSMTR	learning base-guided	2015.
		inquiry in the lecture	Universitas
		interaction between	Negeri
		physical factors at	Makassar
		science teacher	Indonesia
		candidate	
9	International		9 & 10 Oktober
	Conference ICSMTR	Project-based Learning	2017.
	2	as the Atmoshphere for	Universitas
		Promoting Students'	Negeri
		Communication Skills	Makassar
			Indonesia

Seminar nasional Biologi dan Pembelajarannya dengan tema "Inovasi Pembelajaran dan Penelitian Berbasis Potensi Alam"	Pencapaian Hasil Belajar IPA Melalui Model Pembelajaran SiMaYang Berbasis Multiple Representasi	5 Mei 2018. Prodi Pendidikan Biologi Program Pasca sarjana UNM
1st International Conference on Advanced Multidisciplinary Research (ICAMR 2018)	The Science Process Skill Profile of Pre- Service Science Teacher	9 & 10 Oktober 2019. Universitas Negeri Makassar Indonesia

F. Karya buku dalam 5 tahun terakhir

No	Judul Buku	Tahun	Jumlah	Penerbit
			Halaman	
1	PHYMOTIVATION (Belajar	2014	150	LeutikaPrio
	dari gejala alam untuk meraih			
	kesuksesan)			

G. Perolehan HKI dalam 5-10 tahun terakhir

No	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
	Game Penyelamat Lingkungan	2019		

H. Pengalaman merumuskan kebijakan publik/Rekayasa sosial lainnya dalam5 tahun terakhir

No	Judul/Tema/Jenis	Tahun	Tempat	Respon
	Rekayasa Sosial		Penerapan	Masyarakat
	Lainnya yang telah			
	diterapkan			
	-			

I. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi, atau institusi)

No	Jenis Penghargaan	Institusi Pemberi	Tahun
		Penghargaan	
1	Best Presenter	Universitas	2012
		Negeri Surabaya	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam laporanPNBP FMIPA.

Makassar, 29 November 2020

Ketua Peneliti

Sitti Rahma Yunus, S.Pd, M.Pd

NIP:198607172014042001

Lampiran. Biodata Anggota Pengusul **Anggota Peneliti 1**

A. Identitas Diri

1.	Dr.Muh. Tawil,M.S,M.Pd	Laki-laki
2.	Jabatan Fungsional	Lektor Kepala
3.	Jabatan Struktural	Tidak ada
4.	NIP	196312311989031377
5.	NIDN	0031126388
6.	Tempat dan Tanggal Lahir	Sinjai Balangnipa dan 31 Desember 1963
7.	Alamat Rumah	Duta Mas Pertiwi Blok D No.4
		Sungguminasa
8.	Nomor Hp	081341885984
9.	Alamat kantor	Dg Tata Raya Kampus Parangtambung
10.	Nomor Telp/Fax	0411-864936, Fax 0411-880568
11.	Alamat e-mail	tawil_mohammad@yahoo.co.id
12.	Lulusan yang Telah Dihasilkan	S1 = 150 orang, $S-2 = 60$ orang
		Strategi Pembelajaran IPA dan
		Manajemen kelas
		2. Pembelajaran IPA 1 dan 2
13	Mata Kuliah yang diampu	3. IP Sekolah 1,2 dan 3
		4. Zat dan energi
		5. Manajemen Lab. IPA
		6. Matematika IPA

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan Tinggi	IKIP U.Pandang	ITB Bandung	UPI Bandung
		UNESA Surabaya	
Bidang Ilmu	Pendidikan Fisika	Fisika Material	Pendidikan IPA
		Pendidikan IPA	
Tahun Masuk-lulus	1983-1989	1990-1992	
		1995-1997	1997-2011

	S-1	S-2	S-3
Judul	Studi analisis	Analisis laju	
Skripis/Tesis/Disertasi	hubungan antara	pertumbuhan	
	berpikir abstrak	Kristal di dalam	
	dan keterampilan	reactor MOCV	
	observasi terhadap		
	hasil belajar fisika		
		Pengembangan	Pengembangan
		asesmen portofolio	pembelajaran

		dalam mengases kompetensi siswa	berbasis simulasi komputer pada perkuliahan gelombang dan optika untuk meningkatkan keterampilan berpikir kreatif calon guru fisika
Nama	Prof. Baharuddin	Prof. Dr. Barmawi	Prof. Dr.
Pembimbing/Promotor			Liliasari,M.Pd
		Prof. Dr. Prabowo.	
		M.Pd	

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pend	anaan
1.	2005-2006	Pengembangan Model	Hibah Bersaing	Rp.40.000.000
		Pembelajaran IPA Berbasis		
		Portofoilio	ofoilio	
	2007-2008	Implementasi model	Hibah Bersaing	Rp.40.000.000
		pembelajaran IPA berbasis		
		portofolio dalam meningkatkan		
		keterampilan berpikir kritis		
		bagi peserta didik SLTP		

No.	Tahun	Judul Penelitian	Penda	naan
	2009-2010	Implementasi model	Hibah Bersaing	Rp.40.000.000
		pembelajaran IPA berbasis		
		portofolio dalam meningkatkan		
		keterampilan berpikir kreatif		
		bagi peserta didik SLTP		
	2011-2012	Implementasi model	PNBP	Rp. 12.000.000
		pembelajaran IPA berbasis		
		portofolio pada perkuliahan zat		
		dan energi dalam meningkatkan		
		keterampilan berpikir kreatif		
		bagi calon guru IPA		
	2012-2013	Implementasi pembelajaran IPA	PNBP	Rp. 12.000.000
	berbasis simulasi komputer			
		untuk mengembangkan		
		keativitas mahasiswa		

D. Pengalaman Pengabdian Kepada Masyarakat Dalam 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pend	lanaan
	2010-2011	Penerapan Model	Dirjen DIKTI	Rp.100.000.000
		Pengembangan Mutu	-	_
		Pendidikan (PM-PMp) Di		
		Kabupaten Maros Dan		
		Kabupaten Gowa Provinsi		
		Sulawesi Selatan		

E. Pengalaman Penulisan Artikel Ilmiah Dalam Jurnal Dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Volume/Nomor/Tahun	Nama Jurnal
1.	Implementasi Pembelajaran Simulasi komputer pad Topik Superposisi Gelombang dalam Meningkatkan Keterampilan Berpikir Kreatif Mahasiswa	Vol. 12, No. 2, Oktober 2011, halaman 113-121, ISSN 1411-2531	Jurnal Pendidikan MIPA

No.	Judul Artikel Ilmiah	Volume/Nomor/Tahun	Nama Jurnal
2.	Pengembangan Program Simulasi Komputer Berbasis Visual Basic Application Pada Perkulihan Gelombang dan Optika untuk Meningkatkan Keterampilan Berpikir Kreatif Calon Guru Fisika	Jilid. 8, No. 1, April 2012, halaman 55-66, ISSN 1858- 330X	Jurnal Sains dan Pendidikan Fisika
3.	Implementasi Model Pembelajaran Fisika Berbasis Portofolio Untuk Meningkatkan Keterampilan Berpikir Kreatif''.	Vol. 13, No. 1, April 2012, hal: 1-7, ISSN 1411-2531	Jurnal Pendidikan MIPA
4.	Portfolio-based Physics Learning Model To Improve Critical Thinking Skills	Vol.1,No.9, September 2013 hal: 117-124," dengan ISSN: 2201-6333 (Print), ISSN:2201-6740 (Online)	International Journal of Education and Research
5.	Analisis Keterampilan Berpikir Kritis Calon Guru IPA pada Materi Zat dan	Vol. 15, No. 1, April 2014, hal: 53-58, ISSN 1411-2531	Jurnal Pendidikan MIPA

	Energi Melalui Pembelajaran Berbasis Portofolio''		
6.	Pembelajaran Berbasis Simulasi Komputer Untuk Meningkatkan Keterampilan Berpikir Kreatif	Jilid 17, Nomor 3 Oktober 2010, hal: 225-229, ISSN 0215-9643	Terakreditasi Nasional; Jurnal Ilmu Pendidikan (JIP)

F. Pengalaman Penyampaian Makalah Secaa Oral Pada Pertemuan Ilmiah/ Seminar ilmiah Dalam 5 Tahun Terakhir

No.	Nama Pertemuan Ilmiah/Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1.	Seminar Nasional Lesson Study ke 4"	Peran Lesson Study Dalam Mengembangkan Keprofesionalan Pendidik dan Peningkatan Kualitas Pembelajaran Secara Berkelanjutan	2011 dan UNM Malang
2.	Seminar Nasional Luaran Penelitian Multi Tahun dan Strategis Nasional	Pengembagan Model Pembelajaran Sains berbasis Portofolio	2011 dan UNM Makassar
3.	Prosiding Seminar Nasional dengan ISBN:978-602- 99075-0-6	Membangun Masyarakat Melek sains yang Berbudaya dan berkarakter Bangsa Melalui Pembelajaran Sains	2012 dan UNESA Surabya
4.	Prosiding Seminar Nasional dengan ISBN:978-979- 99314-5-0	Pemantapan keprofesionalan, Pendidikan dan Praktisi MIPA Untuk Mendukung pembangunan Karakter Bangsa	2012 dan UNES Semarang
5.	Seminar Nasional Hasil Penelitian	Tentang Guru dengan Tema" Peran Penelitian dalam Pengelolaan dan Pembinaan Guru	2012, UNM Makassar
6.	Prosiding Seminar Nasional dengan ISBN:978-6- 0217146-1-4	Pendidikan Sains The 21 st Century Skills"	2013, UNS Surakarta
7.	Prosiding Seminar Nasional Pendidikan sains 2012"" dengan ISBN:978-6- 0217146-1-4	Perkembangan Penelitian Sains dan Pendidikan Sains Menuju Kemandirian Bangsa Indonesia	2013,UNES Semarang

8.	Prosiding Seminar Nasional Pendidikan sains 2013"" dengan ISBN:2354-70222	Implementasi Kurikulum 2013 dalam Pembelajaran sains dan Budaya Penelitian Sains Menuju Indonesia	2013, UNS Surakarta
		maju	

G. Pengalaman Penulisan Buku dalam 5 Tahun Terakhir

No.	Judul Buku	Tahun	Jumlah Halaman	Penerbit
1.	Fisika Kuantum (ISBN: 979- 841602-3)	2008	307	UNM Press
2.	Model Pembelajaran Sains Berbasis Portofolio disertai dengan Asesmen (ISBN: 978- 602-8111-26-3)	2011	208	UNM Press
3.	Fisika Statistik (ISBN:978- 602-9075-43-4)	2012	235	UNM Press
4.	Berpikir Kompleks dan Implementasinya dalam Pembelajaran IPA (ISBN: 978- 12-1234-123-5)	2013	250	UNM Press
5.	Keterampilan-keterampilan sains dan Implementasinya dalam pembelajaran IPA (ISBN:978-602-9075-31-1)	2014	245	UNM Press

H. Pengalaman Perolehan HKI Dalam 5-10 Tahun Terakhir

No.	Judul/ Tema HKI	Tahun	Jenis	Nomor P/ID

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya Dalam 5 Tahun Terakhir

No.	Judul/ Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan	Tahun	Tempat Penerapan	Respon Masyarakat

J. Penghargaan yang Pernah Diraih dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi	Tahun
		Penghargaan	

1.	Teladan 2 sebagai Ketua prodi di UNM	UNM	2013	
----	--------------------------------------	-----	------	--

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam laporan penelitian PNBP FMIPA.

Makassar, 29 November 2020 Anggota

Dr. Muh. Tawil, M.S, M.Pd NIP. 196312311989031377

Anggota Peneliti 2

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Dr. Nurhayani Haji Muhiddin, M.Si.
2	Jenis Kelamin	Perempuan
3	Jabatan Fungsional	Lektor Kepala
4	NIP/NIK/Identitas lainnya	196712311993032004
5	NIDN	0031126716
6	Tempat dan Tanggal Lahir	Palu, Tahun 1967
7	E-mail	nurhayani08@gmail.com
8	Nomor Telepon/HP	085242166184
9	Alamat Kantor	Prodi Pendidikan IPA/FMIPA UNM
		Jl. Dg. Tata Kampus UNM Parang
		Tambung, Makassar
10	Nomor Telepon/ Faks	(0411)840295/ (0411) 840295
11	Lulusan yang Telah Dihasilkan	S-1= >25 orang; S-2= - orang;
		S-3= - orang
		1. Biologi Umum
12. N	Mata Kuliah yg Diampu	2. Biosistematik
		3. Struktur Perkembangan Tumbuhan
		4. Bioteknologi
		5. Pengembangan IPTEK
		6. Biokimia
		6. Praktikum IPA Sekolah

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan	UNHAS	ITB	UNHAS
Tinggi			
Bidang Ilmu	Biologi	Mikrobiologi	Ilmu Kedokteran
Tahun Masuk-Lulus	1986 – 1992	1998 - 2000	2007 - 2011
Judul	Efektivitas	Hasil Fermentasi	Evaluasi
Skripsi/Tesis/Disertasi	Rhizobium sp.	Kulit Umbi Ubi	kandungan Gizi
	Lokal terhadap	Kayu Sebagai	"Wikau
	pem bentukan	Suplemen	Maombo" Hasil
	bintil akar	Ransum Ayam	Fermentasi
	beberapa	Pedaging	Mikroor ganisme
	varietas kedelai		Lokal dan
	(Glycine max		Pengaruh
	(L.) Merr.)		Klinikopa tologis
			pd Tikus Putih
			Wistar
Nama	Dra. Risco	Dra. Nuryati Juli,	Prof. Dr.dr.
Pembimbing/Promotor	B.Gobel, M.S.	M.S. & Dr.	Suryani As,ad,
			M.Sc.,SpGK. &

Ny	yoman P. P	rof. Dr. Natsir
Aı	ryanta D	jide, M.S.

C.Pengalaman Penelitian

No.	Tahun	Judul Penelitian	Pendar	naan
			Sumber*	Jml (Juta
				Rp)
1.	2007	Pemanfaatan Limbah Cair Sagu	DP2M DIKTI	7
		melalui Proses Biosintesa Untuk		
		produksi "Nata de sago"		
2.	2007	Komposisi Kimia dan	DP2M DIKTI	9
		Mikroorganisme "Wikao		
		Maombo"		
3.	2010	Pengembangan Teknologi	DP2M DIKTI	32
		Fermentasi Umbi Ubi Kayu		
		Pahit (Manihot aipi Phol)		
		Menggunakan Isolat		
		Mikroorganisme Lokal untuk		
		Menu runkan HCN dan		
		Meningkatkan Protein "Wikau		
		Maombo".		
4.	2013	Mekanisme Sintesis Bioplastik	DIKTI/Hibah	50
		PHB dari Pati Sagu oleh Bakteri	Fundamental	
		Amilolitik (Anggota)		
5.	2014-	Pengembangan Inokulum Kultur	DIKTI/Hibah	30
	2015	Campuran Mikroorganisme	Bersaing	50
		Lokal dari "Wikau Maombo"		
		untuk Pengayaan Nutrisi Umbi		
		Ubi Kayu Melalui Teknik		
		Fermentasi Substrat Padat		
		(Ketua)		
6.	2015-	Sintesis Bioplastik oleh Bakteri	DIKTI/Hibah	50
	2016	Amilolitik Lokal Asal Sulawesi	Fundamental	50
		Tenggara Menggunakan		
		Substrat Pati Sagu dan		
		Karakteristik Biodegradasinya		
		(Anggota)		
7.	2017-	Pengembangan Bioselulosa dari	DIKTI/Strategi	92
	2018	fermentasi limbah cair sagu	Nasional	
		sebagai plastik kemasan		
		makanan (Anggota)		

D. Pengalaman Pengabdian Kepada Masyarakat

No.			Pendan	aan .
		Masyarakat	Sumber*	Jml (Juta Rp)
1.	2006	Pelatihan Pemanfaatan Limbah Cair Sagu untuk memproduksi "Nata de Sago"	IPTEKS, DP2M DIKTI	5
2.	2007	Pelatihan Pembuatan "Nata de Sago" di Desa Lakomea, Kecamatan Sampara.	FK8PT	18
3.	2007	Pelatihan Pembuatan Roti dari Tepung Sagu dengan Starter S. cerevisiae.	IPTEKS, DP2M DIKTI	5
4.	2011	Pelatihan Pemanfaatan Limbah cair sagu untuk memproduksi Nata de sago di desa Puuloro Kec. Sampara, Kab. Konawe	BLU Unhalu	3.1
5.	2011	Pelatihan Pengolahan Limbah cair tahu menjadi nata de soya di desa Lambusa Kec. Konda Kab. Konawe Selatan	BLU Unhalu	1.9
6	2012	Pendampingan Pembelajaran dan Praktikum Biologi Bagi Kelas X CIBI di SMAN 4 Kota Kendari	BOPTN FMIPA UHO	7.5
7	2013	Pelatihan Bioteknologi Pengolahan Buah Kelapa Melalui Teknik Fermentasi Bagi Siswa SMK Negeri 5 Kendari	BLU Unhalu	5.2
8	2014	Pelatihan Bioteknologi Youghurt Berbahan Baku Jagung	Mandiri	7,5
9	2015	Pelatihan Pembuatan Roti Berbahan Baku Tepung Modifikasi (Campuran Tepung Terigu dan Wikau Maombo)	Mandiri	7.5
10	2016	Pelatihan Teknologi Fermentasi Ubi Jalar Ungu menjadi Makanan Fungsional "Tape Sinju"	Mandiri	7.5
11	2017	IbM Pengolahan Limbah Kelapa menjadi Produk Bernilai ekonomi kepada Kelompok Petani Kelapa di Kecamatan Sawa Kabupaten Konawe Utara Sulawesi Tenggara	DIKTI/IbM	42,5

E. Publikasi Artikel Ilmiah Dalam Jurnal

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/ Nomor/Tahun
1	Aktivitas amilolitik isolat bakteri pada limbah sagu	Jurnal Bionature	7/02/2006
2	Karakteristik Mikroorganisme pada Proses Fermentasi Biji Kakao (<i>Theobroma cacao</i> L.).	Jurnal Aplikasi Sains.	9/02/2007
3	Seleksi Cendawan Amilolitik dari Limbah Sagu.	Jurnal Bionature	8/01/2007
4	Komposisi Mikroorganisme pada Proses Fermentasi Umbi Ubi Kayu Pahit menjadi "Wikau Maombo".	Jurnal Bionature.	12/01/2011
5	Pemanfaatan Limbah Cair Sagu Melalui Teknologi Biosintesa untuk Memproduksi "Nata de Sago"	Paradigma	16/02/2012
6	A Study on Production of Poly-B- Hydroxybutyrate Bioplastik from Sago Starch by Indigenous Amylolytic Bacteria	Biotechnology	18/02/2013
7	Kandungan Protein dan HCN "Wikau Maombo" Hasil Fermentasi Umbi Ubi Kayu Pahit (Manihot aipi Phol.) menggunakan beberapa Isolat Mikroorganisme Lokal	SAINSMAT	11/02/2013
8	Kandungan Gizi Umbi Ubi Kayu Pahit (<i>Manihot aipi</i> Phol.) pada Tahapan Pengolahan Sebelum Fermentasi dan "Wikau Maombo" Hasil Fermentasi Tradisional	BIOWALLACEA	1/02/2014
9	Produksi Bioplastik dari Pati Sagu oleh Bakteri Amilolitik Lokal menggunakan Sumber Nitrogen Berbeda	Prosiding Semirata 2015 bidang MIPA BKS-PTN Barat Universitas Tanjungpura Pontianak. Hal 234 - 242	2015
10	Bioconversion of Sago Starch to Bioplastic Poly-β- Hydroxybutyrate (PHB) by Local Strain Bacterial Bacillus megaterium PSA10	Journal of Chemical and Pharmaceutical Research, 2016, 8(7):918-923	8/7/2016
11	Screening of Acetic Acid Bacteria from Pineapple Waste for Bacterial Cellulose Production using Sago Liquid Waste	Biosaintifika. Journal of Biology & Biology Education.	9 (3) (2017

http://journal.unnes.ac.id/nju/i	
ndex.php/biosaintifika	

F. Pemakalah Seminar Ilmiah (Oral Presentation)

No	Nama Pertemuan Ilmiah / Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1	Seminar Nasional Hasil Penelitian Dosen Muda dan Studi Kajian Wanita	Pemanfaatan Limbah Cair Sagu melalui Proses Biosintesa Untuk produksi "Nata de sago"	26 -28 Mei 2008 Makassar
2	Seminar Nasional Penelitian Desertasi Doktor	Pengembangan Teknologi Fermentasi Umbi Ubi Kayu Pahit (<i>Manihot aipi</i> Phol) Menggunakan Isolat Mikroorganisme Lokal untuk Menurunkan HCN dan Meningkatkan Protein "Wikau Maombo".	5 – 6 Juli 2011 Jakarta
3	Seminar Nasional Biologi	Isolasi dan Seleksi Kapang Rhizopus sp. Amilolitik Lokal dari "Wikau Maombo" Terfermentasi	29 November 2014 UNS Semarang
4	Seminar Celebes International Conference on Diversity at Wallacea's Lirw (CICDWL 2015) di Universitas Halu Oleo Kendari	Selection and Characterization of Amylolytic lactic acid bacteria isolated from "Wikau Maombo" Fermented	9-10 Mei 2015 Universitas Halu Oleo Kendari
5	Seminar Nasional Biologi	Viabilitas <i>Rhizopus</i> sp. dan Bakteri Asam Laktat (bal) Lokal dalam "Ragi Wikau Maombo"	28 Maret 2016 FMIPA-UNHAS Makassar
6	The Second International Confrence on Mathematics, Sciences, Technology, Education, and their Applications (2 nd ICMSTEA)	Effect of Mixture Inoculum of Lactic Acid Bacteria (LAB) and Mold Amylolytic in Various Concentration andFermentation Time of Changing Protein and hcn Content of Bitter Cassava Toots (Manihot aipi Phol.)	3 rd – 4 th October, 2016 FMIPA – UNM Makassar, Indonesia
7	The International Confe rence on Statistics, Mathematics, Teaching, and	Antibacterial Activity of Mold Isolate from "Wikau Maombo" Based on Incubation Period	9 th – 10 th October, 2017 FMIPA – UNM Makassar, Indonesia

Research Department	
of Statistics & Depart	
ment of Mathematics	
Faculty of	
Mathematics and	
Natural Sciences,	
Universitas Negeri	
Makassar (2nd	
ICSMTR 2017)	

G. Penghargaan dalam (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Satyalancana Karya	Presiden Republik Indonesia	2013
	Satya XX Tahun		

H. Perolehan HKI

No	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
1.	Fermentasi "Wikau	2013	Paten	P00201100705/
	Maombo" melalui		Sederhana	2013/01751 A
	Fermentasi Terkontrol			
	Menggunakan			
	Mikroorganisme Lokal			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya.

Makassar, 29 November 2020

<u>Dr. Nurhayani Haji Muhiddin, M.Si.</u> NIP. 196712311993032004

Lampiran 8 Luaran Penelitian (Bukti Publikasi)

1. Artikel Seminar Internasional ICSMTEA 4

B203

Describing Representation Ability of Prospective Science Teacher Based on Learning Style

S R Yunus¹, M Tawil¹, N H. Muhiddin¹, St. M A Muhiddin¹, and M H Alim²

- ¹ Science Education Study Program, Universitas Negeri Makassar, Indonesia
- ² SMPN 18 Makassar, Makassar, Indonesia

email: *Sitti.rahma.yunus@unm.ac.id

Abstract. The ability to represent a phenomenon in various forms either graphically, mathematically, in diagrams, etc. is the ability of multiple representations. This study aims to provide an overview of the multiple representation abilities of prospective science teacher based on their learning styles. The sample was 59 students of the 4th semester of Science Education Study Program, Universitas Negeri Makassar who took sourse of Fluid. The research instrument used were a learning style test and a representation ability test on dynamic fluid material in the form of multiple choices. The results of the learning style test showed that 21 are auditory learner, 11 are kinesthetic, and 27 are visual. Furthermore, the results of the representation ability test related to image representation, graphic representation, verbal representation and symbolic representation were analyzed according to the visual, auditory, and kinesthetic learning styles. The results of data analysis showed that the highest average value of graphic representation ability was owned by students with a visual learning style in the low category. Furthermore, the highest value of the ability to represent images, symbols, and verbal was had by kinesthetic learner with each category, medium, high, and high.

Keywords: Representation, symbol, graph, verbal, image, learning style

2. HaKI artikel penelitian

Pengusulan HaKI untuk artikel penelitian

