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Abstract. This study employs empirical Bayes method to estimate the transition probability matrix of Markov chain. The 
transition probability is used to determine drought characteristics for 35 rainfall stations in Peninsular Malaysia. The 
result reveals that non-drought condition is more persistent than the other drought conditions. The result also shows that 
the middle area of Peninsular Malaysia experiences longer non-drought condition with higher probability compared to 
other regions. Meanwhile, western area experiences moderate drought condition, more frequent with shorter duration.  
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INTRODUCTION 

Estimation of the transition probability is important in Markov chain modeling. Many researchers employed the 
maximum likelihood method to estimate the transition probability [1-7]. Another method that could also be used is 
the empirical Bayes method, as proposed by Meshkani & Billard [8]. There have been cases which the maximum 
likelihood method results in zero transition probability estimator but this is not true with empirical Bayes method.  

Markov chain models have been used by Banik et al. [9] in determining drought-proneness for weekly rainfall 
data in India. Paulo et al. [5] and Paulo and Pereira [6-7] applied Markov chain model to predict drought class 
transition. Mishra et al. [4] also used Markov chain model to investigate the probability of drought duration and 
persistence. Meantime, Deni et al. [10] determined the optimum order of the Markov chain model for daily rainfall 
occurrences in Peninsular Malaysia. In this study, empirical Bayes method will be employed to describe drought 
characteristics in Peninsular Malaysia. The drought characteristics considered are a drought persistence, probability 
of drought, drought duration and mean recurrence time of drought. 

 

DATA AND METHODS 

This study method, the application of the monthly rainfall amount data (in mm) from 35 rainfall stations in 
Peninsular Malaysia for the period of 1970 – 2008 (TABLE (1)), obtained from the Drainage and Irrigation 
Department and Malaysian Meteorological Department. Three stations have complete data while each of the other 
32 stations have less than 10% of missing data. The missing data were replaced by estimation using the normal ratio 
and modified normal ratio methods [11-12]. Based on Gustafson-Kessel fuzzy clustering method and adjustment of 
region [13-14], thirty five rainfall stations could be grouped into six regions (FIGURE 1). The drought state is 
classified into four states based on the standardized precipitation index (SPI) [15] as shown in TABLE (2). SPI 
values are calculated by using the approximation as provided by Abramowitz and Stegun [16] as follows: 

Firstly, fitting the Gamma probability density function of the frequency distribution of monthly rainfall data for 
each study station. The cumulative probability function  for the rainfall amount  formed from the Gamma 
distribution. Since the gamma distribution is not defined for  and rainfall value may contain zero, the 
cumulative probability function of   becomes ), where . Finally, 
SPI values are calculated as follows  

 

The 2013 UKM FST Postgraduate Colloquium
AIP Conf. Proc. 1571, 1082-1089 (2014); doi: 10.1063/1.4858797

©   2014 AIP Publishing LLC 978-0-7354-1199-9/$30.00

1082



 

  (1) 

 
 
 

 

  (2) 

 
 

where , 

 
, , , , , .  

Further, each station in the period considered, data of drought categories for the current month and the following 
month are arranged into transition count matrix and categorized as non-drought, near-normal, moderate and severe. 
Data that are used in this study are also found to satisfy homogeneity property and follows the first order Markov 
chain. Each the homogeneity property and the first order Markov chain of data verified using the likelihood ratio 
test. 

TABLE (1). Name and location of rainfall stations in Peninsular Malaysia. 
Code Name of Rainfall 

Stations 
Latitude 
(N) 

Longitude 
(E) 

Code Name of Rainfall 
Stations 

Latitude 
(N) 

Longitude 
(E) 

1 Alor Setar  06 06 20 100 23 30 19 Ldg. Johol  02 36 10 102 19 10 
2 Baling  05 35 00 100 44 10 20 Kg. Sawah Lebar  02 45 20 102 15 50 
3 Bkt. Bendera  05 25 25 100 16 15 21 Petaling Kuala Klawang 02 56 40 102 03 55 
4 Jeniang Klinik  05 48 50 100 37 55 22 Ldg. New Rompin  02 43 10 102 30 45 
5 Sg. Pinang  05 23 30 100 12 45 23 Sikamat Seremban 02 44 15 101 57 20 
6 Dabong  05 22 40 102 00 55 24 Semenyih 02 53 55 101 52 13 
7 Gua Musang  04 52 45 101 58 10 25 Sg. Manggis 02 49 35 101 32 30 
8 Kg. Aring  04 56 15 102 21 10 26 Endau  02 39 00 103 37 15 
9 Kampar  04 18 20 101 09 20 27 Chin-Chin  02 17 20 102 29 30 

10 Ldg. Bikam  04 02 55 101 18 00 28 Johor Bahru  01 28 15 103 45 10 
11 Sg. Bernam  03 41 53 101 20 60 29 Kota Tinggi 01 45 50 103 43 10 
12 Sitiawan  04 13 05 100 42 00 30 Ldg. Sg. Labis 02 23 05 103 01 00 
13 Telok Intan  04 01 00 101 02 10 31 Dungun 04 45 45 103 25 10 
14 Ampang 03 09 20 101 45 00 32 Kemaman  04 13 55 103 25 20 
15 Ldg. Edinburgh  03 11 00 101 38 00 33 Kg. Dura  05 04 00 102 56 30 
16 Genting Klang  03 14 10 101 45 10 34 Paya Kangsar  03 54 15 102 26 00 
17 Gombak 03 16 05 101 43 45 35 Pekan 03 33 40 103 21 25 
18 Kg. Sg. Tua  03 16 20 101 41 10     

TABLE 2.  Classification of drought based on SPI  

SPI Values Drought Categories 
SPI  ≥ 0 
-1 < SPI < 0 
-1.5 < SPI  -1 
SPI ≤ -1.5 

Non-drought  
Near normal  
Moderate  
Severe  
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FIGURE 1. Location of rainfall stations used in this study 

Empirical Bayes estimator for Transition Probability Matrix of Markov Chain 

A Markov chain   is a stochastic process with property that the process value at time , 
denoted , depends only on its value at time  or  such that for every  and all states , we have  
 

.  (3) 
 
Let  be the transition probability from state  at time  to state  at time , then  
could be represented in the transition probability matrix form, , as follows 
 

 ,   and  is the number of states.  

Empirical Bayes Estimation 

Let F = [  represents the transition count matrix. The row vector of F is denoted by  = [fi1 ... fis] which is 

assumed follow the multinomial distribution with parameters  = [  Meshkani & Billard [8] assumed 
the matrix beta distribution, h( | β), as a conjugate prior distribution for P and a matrix β = [βij] is the matrix of 
parameters. The prior predictive distribution of F is 
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and the posterior distribution of  P for  a given F, is , which  follows the 
matrix beta distribution with a parameter . Bayes estimator for P is the posterior mean of P for a 

given F, that is , where . In empirical Bayes method, we need to estimate a prior 

parameter for  by using the observed data. Meshkani and Billard [8,17-18] proposed the estimator for based 
on the past data. Suppose there are m rainfall stations studied which each station has the transition probability matrix 
F = [ , k = 1, ..., m and i , j = 1, ..., s, if  as the current data, then the past data refers to the data set , l = 
1, ..., m, and l  k. Based on the current data and information from the past data, we could obtain estimator for the 
transition probability matrix. Meshkani and Billard [8] used method of moments to estimate a parameter , as 
follows: 

Let =  and  =  (1 – ), Fi.  0, then E[ ] =  and E[ ] =  E[ ]{1 – E[ ]} . The 

moments estimator for  could be determined by using the sample average of the past data. Thus, estimator for 
 is 

 

 (5) 

 

and  . Therefore, we obtain empirical Bayes estimator of the transition probability 
matrix for each rainfall station in the corresponding region, as follows:  
 

  (6) 

The Mean Residence Time 

Let  denote the transition probability of  Markov chain  with drought category  and  is the residence 
time for any category  and for  is a number of months 
 

 
                                                                                                                                                 
(7) 
 

Meanwhile, the mean residence time for any drought category   is given by . 

The Mean Recurrence Time 

The first passage time from  to  denotes the time taken for a process to move for the first time in drought 
category  to category . The mean first passage time from state  to state , , is defined as 
 

, for every  (8) 

 
In the matrix form, Eq. (8) becomes , where  is a matrix with elements ,  is a unit 
matrix, P = , and  is the diagonal matrix whose elements,  The mean first passage time, , 
is called the mean recurrence time for any drought category , that is, the average time required to leave the initial 
category  before returning to the same category. 
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RESULTS AND DISCUSSIONS 

The empirical Bayes estimators of the transition probability for each station are given in TABLE (3). This table 
gives the probability of drought persistence for each station with different drought states, which was obtained from 
the diagonal of each transition probability matrix. The drought persistence value represents the probability of the 
same drought category in two consecutive months. TABLE (3) also shows that, in generally, persistence of non-
drought state has a highest transition probability than other states, where its probability is greater than 0.5. 
Therefore, near-normal state has the second highest persistence probability.  

Based on spatial distribution of non-drought probability, FIGURE 2 (a) shows that the middle area of Peninsular 
Malaysia has non-drought probability higher than other areas, with probability greater than 0.6. This area also 
experienced longer non-drought duration, which was about 3 – 4 months with mean recurrence time is about 1.5 
months (FIGURE 3 (a) and FIGURE 4 (a)). The longer duration for near normal condition occurred in southern area 
for about two months with probability between 0.3 and 0.4 and mean recurrence time of about 2 – 3 months 
(FIGURE 2 (b), FIGURE 3 (b) and FIGURE 4 (b)). In the northern and western areas, mean recurrence time of 
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moderate drought is between 0.5 and 1 years with the duration is approximately 1.1 months (FIGURE 3 (c) and 
FIGURE 4 (c)). Meanwhile, the longer severe drought duration occurred in middle area, that is about 2 months, but 
its probability is smaller, and this condition also has mean recurrence time about 8 – 12 months (FIGURE 2 (d), 
FIGURE 3 (d) and FIGURE 4 (d)).  

 
 

 

FIGURE 2. Spatial distribution of drought probability: (a) Non-drought; (b) Near-normal: (c) Moderate drought; and  
(d) Severe drought. 
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                                                            (c)                         (d) 
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FIGURE 3. Spatial distribution of the mean residence time of drought (months): (a) Non-drought;  
(b) Near-normal: (c) Moderate drought; and (d) Severe drought. 

 

 

FIGURE 4. Spatial distribution of the mean recurrence time of drought (months): (a) Non-drought;  
(b) Near-normal: (c) Moderate drought; and (d) Severe drought. 

 

CONCLUSION 

In this study, the transition probability matrix estimator of Markov chain has been determined using empirical 
Bayes method. Based on the transition probability matrix obtained, the non-drought event was more persistent than 
other drought categories. Spatial distribution of drought characteristics revealed that middle area of peninsular 
Malaysia experienced longer non-drought event with probability greater than other areas, while for severe drought 
event, mean recurrence time of this area is smaller than one year. The southern area experienced near normal 
condition, with duration about two months and its probability is approximately 0.3. The northern and western areas 
has mean recurrence time of moderate drought ranging from 0.5 to 1 year with duration of about one month.  
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