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Abstract: The agriculture sector plays an essential function within the Indian economic system. Food-

grains provide almost all the calories and proteins. This paper aims to compare ARIMA, SutteARIMA,

Holt-Winters, and NNAR models to recommend an effective model to predict foodgrains production

in India. The execution of the SutteARIMA predictive model used in this analysis was compared

with the established ARIMA, Neural Network Auto-Regressive (NNAR), and Holt-Winters models,

which have been widely applied for time series prediction. The findings of this study reveal that

both the SutteARIMA model and the Holt-Winters model performed well with real-life problems

and can effectively and profitably be engaged for food grain forecasting in India. The food grain

forecasting approach with the SutteARIMA model indicated superior performance over the ARIMA,

Holt-Winters, and NNAR models. Indeed, the actual and predicted values of the SutteARIMA and

Holt-Winters forecasting models are quite close to predicting foodgrains production in India. This

has been verified by MAPE and MSE values that are relatively low with the SutteARIMA model.

Therefore, India’s SutteARIMA model was used to predict foodgrains production from 2021 to

2025. The forecasted amount of respective crops are as follows (in lakh tonnes) 1140.14 (wheat),

1232.27 (rice), 466.46 (coarse), 259.95 (pulses), and a total 3069.80 (foodgrains) by 2025.

Keywords: ARIMA; SutteARIMA; NNAR; Holt-Winters; food grain

1. Overview of the Study

India’s agriculture has the potential to increase productivity and overall production [1,2].
The present global governance architecture for nutrition, food, and agriculture is incapable
of appropriately addressing the difficulties of ensuring progress toward food security [3];
with disproportionately concentrated malnutrition among poor children in India [4]. India’s
population is expected to reach 1.7 billion by 2050, roughly equaling China and the United
States combined. Can India adequately feed its 1.7 billion people? If food is scarce now [5],
what will the circumstances be like in 2050, when India will have an additional 430 million
people to feed? [6–8].

Food grain prediction is a significant activity for global decision-making in the agricul-
ture sector. An accurate foodgrains prediction approach will help farmers decide when and
how much to cultivate [9]. In this situation, it is even more essential to forecast the quantity
of crops produced across India effectively. To accomplish this, multiple forecasting models
were used to choose the most appropriate model and anticipate future crop output values.
An accurate crop production estimate serves as the cornerstone for its agricultural commodi-
ties marketing policy decisions. Crop yield forecasting is essential in farm planning and
management, domestic food production, international food trade, habitat preservation, and
other fields [10]. As a result, the primary goal of this work is to provide an adequate model
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for forecasting food grain production in India. Several models were used for crop yield
forecasting: machine learning algorithms and modeling techniques are often undervalued
in defining agricultural produce. A land of a growing population undoubtedly requires
optimized output from agriculture. Incorporating the latest comprehensive technology in
agriculture is the only way to survive. Liakos et al. [11] demonstrated how agri-technology
domain and machine learning programs benefit farmers’ decisions regarding crop, live-
stock, water, and soil management. Veenadhari et al. [12] have attempted to develop a crop
advisor to consider the effect of the most influential climate change parameters on crop
yields in Madhya Pradesh. Paul and Sinha [13] forecasted wheat yield concerning weather
variables in the Kanpur district of Uttar Pradesh using parametric and non-parametric
tests. Turmeric yield was similarly forecasted on climate parameters using a data set for
20 years [14]. In another study performed by Kandiannan et al. [14], turmeric yield was
predicted using a multiple regression model where a significant correlation was found
between yield and rainfall, evaporation wind speed, minimum temperature, and humidity.
Gandhi and Armstrong [15] in their study examined the correlation between climate factors
and rice crop yields for the Kharif season in India using a historical data set of agriculture.
Likewise, Woodhouse [16] also found technological options for the productivity revolu-
tion in Africa. With technology, environmental impact is also an important dimension to
consider. The research study by Chlingaryan et al. [17] talks about precision agriculture
and improvement in yield production with proper nitrogen management. The future
demands sustainable and optimized crop management while minimizing environmental
harm. Machine learning algorithms and remote sensing technologies are of great use in this
estimation. According to [18], machine learning is a reliable technology for analyzing crop
price prediction considering annual rainfall, WPI to produce a logical conclusion. Random
Forest Ensembled (RFE) learning and decision tree regressor were compared, and RFE
was found to have a higher accuracy. Data mining techniques helped improve crop yield
prediction as reflected by studies conducted by Gandhi and Armstrong [15] and Sujatha
and Isakki [19].

The developing model that accurately forecasts growth and output can support policy
makers by improving control for accurate production, equating market supply and demand
with lower cost. According to Alhnaity et al. [20], development in machine learning, in
particular, deep learning, can provide new analytical tools.

India has the most significant number of hungry people in the world, as the research
work by Banik [21] demonstrates; it reviews India’s success in preventing famine and
compares it to the country’s inability to provide food security to hundreds of millions
of its citizens. A study conducted by Sherman [22] explores how the methods to get the
country to “grow more food” as part of the drive towards nationwide self-sufficiency were
marked by conflict between the dream of supplying the benefits of development to all
Indians and the reality that the resources in independent India were minimal. Hazra and
Bohra [23] suggested meeting growing food demand by ensuring sustainable intensification
of crops, achieving high yield per unit production, and bringing more cropland area
under cultivation. Thus, achieving food security with constrained resources is required.
Agricultural policy makers in most countries rely on prediction models to influence food
security policies.

The paper by Mittal et al. [24] stresses using modeling results to coordinate environ-
mental and renewable energy source policies to reach the GHG emission lowering target
efficiently and cost-effectively. The mitigation price in terms of economic development
and social welfare loss can be reduced by improving the penetration of renewable energy.
Farmer’s income is also considered an essential factor in determining agricultural yield.
Farmers who lack access to resources, capital, and information lag in optimizing their pro-
duce. So, Birthal et al. [25] suggested diversification by small farmers towards high-value
crops such as fruits and vegetables that significantly raise farm income. Choosing and pro-
ducing a crop is a tedious task as various factors affect agriculture such as soil, temperature,
humidity, and rainfall, and these differ across regions. According to Thomas [26], it would
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be of incredible help to agricultural farmers to determine on the storage and business side
if it was possible to find the best crop before sowing it. Recommending appropriate crops
to farmers can significantly increase productivity and reduce loss. Sujatha and Isakki [19]
also demonstrate the crop yield estimation by selecting the most excellent crop, thereby
improving the value and gain of the farming area using data mining.

Kang et al. [27] present an estimation of maize yield forecast in the U.S. using different
machine learning algorithms [random forest, XGBoost, support vector regressor, Lasso,
LSTM, and CNN]. Furthermore, the study found that the yield prediction method helps
from the advanced algorithm and large composite of details. The XGBoost outperforms
other algorithms both in exactness and strength. It also showed that incorporating the best
algorithm and inputs enhances the prediction exactness by 5% compared to the baseline
model (Lasso). Zheng et al. [28] added that crewless-aerial-vehicle (UAV)-based remote
sensing (RS) possesses the significant advantage of collecting images for precision agri-
cultural applications. Data visualization is vital for understanding the general trends of
various factors influencing crop yield. The study by Gandhi and Armstrong [15] examined
data visualization approaches to find a correlation between rice crop yield and climatic
factors. In agriculture, crop yield production is becoming a significantly challenging task.
Earlier, yield prediction was performed by considering farmers’ experience in particular.
However, this demands accuracy and farmers’ involvement which is not always feasible. So
competitive analysis was performed by Sivanandhini et al. [29] of the crop yield protection
model for a district in Tamil Nadu. Then, empirical investigation suggested that SVM (sup-
port vector regression) implementation is better than KNN (k-nearest neighbor) decision
tree models. The SVM model with two other enhanced variants, F-SVM (fuzzy-support
vector regression) and BS-SVR (boosted-support vector regression), was used by Fung
et al. [30] to predict the standardized precipitation and transpiration indices and minimize
potential drought impact in oil palm plantations at the Langat river basin. F-SVR was
found to be best with improved accuracy.

Research Gap

Studies have explained multiple views on the comparative performance of forecasting
models. Hence, further investigation is required to help unify a coherent picture of an
advanced methodology. This paper, therefore, seeks to compare and clarify different
contradictory opinions reported in the literature on the superiority of ARIMA, SutteARIMA,
Holt-Winters (H-W), and Neural Network Auto-Regressive (NNAR) models. Moreover,
the study has compared ARIMA, SutteARIMA, H-W, and NNAR with their MAPE and
MSE values to suggest an appropriate prediction model. The ARIMA method was chosen
because it is used in agriculture crop research and foodgrains predictions; for example,
ARIMA was used to forecast food crop price [31] and Chinese food grain price [32]; ARIMA
along with LSTM-NN models was used to forecast rice cultivation in India [33]. Studies
have also predicted the amount of monsoon rainfall in Andhra Pradesh, India by using
MANNs (Modular Artificial Neural Network). Subsequently, the crop yield is predicted
with rainfall data and the area allotted to that gave crop output by support vector regression.
ANN and multiple linear regression were also used by Maya Gopal and Bhargavi [34]. A
hybrid relationship of the Multiple Linear Regression-Artificial Neural Network (MLR-
ANN) model has been proposed in research work for crop yield forecasts. This hybrid
model was compared with Artificial Neural Network (ANN), Multiple Linear Regression
(MLR), Support Vector Regression (SVR), k-Nearest Neighbor (KNN), and Random Forest
models, and its accuracy outperforms all the other conventional models.

The SutteARIMA model also performed well in several other areas, including COVID-
19 and stock prices in Spain [35], to predict COVID-19 in the U.S. [36], and to predict
COVID-19 in the World [37]. Moreover, the Holt-Winters method is one of the most widely
used predicting algorithms [38]. The method estimated the trend in overall emissions of
organic water contaminants in Poland and Romania [39]. In one study, Kahforoushan
et al. [40] applied ANN and H-W methods to predict the added value of agriculture
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subsections. In addition, Michel and Makowski [41] have compared different forecasting
models, including Holt-Winters, to predict wheat yield in France.

2. Model

2.1. ARIMA

The Yt process is an ARIMA(p,q) or autoregressive-moving average model if it
fulfilled as:

φp(B)Yt = θq(B)at, at ∼ WN
(

0, σ2
)

, φp, θq ∈ R, t ∈ Z. (1)

with φp(B) is AR(p) and θq(B) is MA(q).
The ARIMA model becomes:

φp(B)(1 − B)dYt = θq(B)at, at ∼ WN
(

0, σ2
)

, φp, θq ∈ R, t ∈ Z.

If there is a difference with φp(B) is AR(p), (1 − B)d is differencing non-seasonal, and
θq(B) is MA(q).

2.2. α-Sutte Indicator

This model (α-Sutte indicator) are developed on the technique of forecasting on the
previous values of the indicator set [42]. The ideal applies the adapted version of the
moving average method of forecasting. α-Sutte indicator is essentially used to identify and
forecast trends and fluctuations in a time-series database. It is based on four data sets of
the previous period, that is, Yt−1, Yt−2, Yt−3, and Yt−4 [42]. The equations of the α-Sutte
indicator method are [42]:

Yt =

γ

(

∆x
γ+δ

2

)

+ β

(

∆y
β+γ

2

)

+ α

(

∆z
α+β

2

)

3
(2)

where:
δ = Yt−4

γ = Yt−3

β = Yt−2

α = Yt−1

∆x = γ − δ = Yt−3 − Yt−4

∆y = β − γ = Yt−2 − Yt−3

∆z = α − β = Yt−1 − Yt−2

Yt = data at t time, Yt−k = data at (t − k) time

2.3. SutteARIMA

SutteARIMA is a method of forecasting that incorporates ARIMA with the method of
α-Sutte Indicator [42]. SutteARIMA using the average of results from ARIMA and α-Sutte
indicator.

The ARIMA in Equation (1) can be described as:

(

1 − φ1B − φ2B2 − . . . − φpBp
)

Yt =
(

1 − θ1B − θ2B2 − . . . − θqBq
)

at

Yt − φ1BYt − φ2B2Yt − . . . − φpBpYt = at − θ1Bat − θ2B2at − . . . − θqBqat
(3)

While Equation (3) can be reduced by using the backward shift operator (BpZt = Zt−p):

Yt − φ1Yt−1 − φ2Yt−2 − . . . − φpYt−p = at − θ1at−1 − θ2at−2 − . . . − θqat−q

Yt = φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p + at − θ1at−1 − θ2at−2 − . . . − θqat−q
(4)
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If we define:
δ = Yt−4

γ = Yt−3

β = Yt−2

α = Yt−1

Equation (4):

Yt = φ1α + φ2β + φ3γ + φ4δ + . . . + φpYt−p + at − θ1at−1 − θ2at−2 − . . . − θqat−q (5)

Furthermore, Equation (2) can be simplified as:

Yt =

γ

(

∆x
γ+δ

2

)

+ β

(

∆y
β+γ

2

)

+ α

(

∆z
α+β

2

)

3

Yt =

γ∆x
γ+δ

2

+ β∆y
β+γ

2

+ α∆z
α+β

2

3

Yt =
γ∆x

3γ+3δ
2

+
β∆y

3β+3γ
2

+
α∆z

3α+3β
2

Yt =
2γ∆x

3γ + 3δ
+

2β∆y

3β + 3γ
+

2α∆z

3α + 3β

Yt = γ
2∆x

3γ + 3δ
+ β

2∆y

3β + 3γ
+ α

2∆z

3α + 3β

When Equation (4) is added to Equation (5), we find:

2Yt = φ1α + φ2β + φ3γ + φ4δ + . . . + φpYt−p + at − θ1at−1 − θ2at−2 − . . . − θqat−q+

γ 2∆x
3γ+3δ + β

2∆y
3β+3γ + α 2∆z

3α+3β

Zt = α
(

φ1
2 + ∆z

3α+3β

)

+ β
(

φ3
2 + ∆y

3β+3γ

)

+ γ
(

φ3
2 + ∆x

3γ+3δ

)

+
φ4δ

2 + . . . +
φpYt−p

2 + at
2 − θ1at−1

2 − θ2at−2
2 − . . . −

θqat−q

2

(6)

Therefore, Equation (6) is the formula of SutteARIMA.

2.4. Holt-Winters

Holt-Winters approach was divided into two categories: Additive Holt-Winters (AH-W)
and Multiplicative Holt-Winters (MH-W). Theseparts are explained in following equations:

The component form for the multiplicative method is:

At = α
yt

st−m
+ (1 − α)(At−1 + Bt−1), (7)

Bt = β∗(At − At−1) + (1 − β∗)Bt−1, (8)

Xt = γ
yt

(ℓt)
+ (1 − γ)Xt−m, (9)

Ft+m = (At + Bt+m) Xt−s+m, (10)

The component form for the additive method is:

At = α(yt − Xt−m) + (1 − α)(At−1 + Bt−1), (11)

Bt = β∗(At − At−1) + (1 − β∗)Bt−1 , (12)

Xt = γ(yt − At−1 − Bt−1) + (1 − γ)Xt−m , (13)
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Ft+m = (At + Bt+m) Xt−s+m, (14)

where: yt = data on t time, s = the seasonal length in a certain time, and m = the amount of
data to be predicated.

2.5. Neural Network Auto-Regressive (NNAR)

The NNAR is the widely used model for time series modeling and forecasting [43].
This model is a three-layer feedforward neural network involving linear combination and
activation functions. The relationship between the model output (yt) and the inputs (at−1;
. . . ; yt−p) has the following mathematical representation:

yt = w0 ∑
k

t=0
wj .g

(

w0j +
n

∑
i=0

wi,j .yt−1

)

+ Et, (15)

where, wi,j (i = 0, 1, 2, . . . , n, j = 1, 2, . . . , h) and wj (j = 0, 1, 2, . . . , h) are techniques param-
eters or association weights; n is number of input nodes; and h is number of hidden nodes.
A sigmoid function used as the hidden layer transfer function shown in Equation (16). A
linear function is the output layer’s most widely used activation function.

Sig(x) =
1

1 + exp(−x)
, (16)

3. Methodology

Agriculture food grain production data from 1950–1951 to 2019–2020 was collected
from the open data source of Reserver Bank of India (RBI) in India [44]. Reserve Bank
of India collects agriculture food grain data from the Ministry of Agriculture & Farmers
Welfare, Government of India. Data for 2019–2020 is based on fourth advance estimates.
This data was fragmented into five parts: wheat, rice, coarse, pulses, and total crops. Total
crops are the sum of all four crops (wheat, rice, coarse, and pulses). The data was split
into two categories: training data and test data. Data from 1951 to 2013 was considered for
training on that basis test conducted from 2014 to 2020. Based on the fitted data, this study
conducted short-term forecasts for the next five years (2021–2025). Ahmar [45] designed the
SutteForecast R package in R software which compares the forecasting outcomes of other
forecasting approaches. In diagnosing the predictions, we used the forecasting accuracy
estimation MAPE (Mean Absolute Percentage Error) [46].

MAPE =
1

N ∑
N

t=1
|

At − Yt

At
|, (17)

The mean square error is

MSE =
∑

n
t=1(At − Yt)

2

N
, (18)

where, At = actual values at data time t, and Yt =forecast value at data time t.

4. Experimental Results and Discussion

Due to extensive growth of the population, there is a need to make predictions on food-
grains. Past studies, which have made predictions on various aspects, employed limited
approach/models. The present research study employs SutteForecast R-studio package to
analyze models for ARIMA, SutteARIMA, H-W, and NNAR models, which would be quite
helpful in making relatively accurate predictions. Hence, the usage of extensive models
makes this study unique and valuable. The acquired findings are provided in the sections
below. The first step for analysis is plot data. The plot of data can see in Figure 1.
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Figure 1. Foodgrains production in India (1950–51 to 2019–20).

From Figure 1, we can see that the data has increased from year to year in both data
rice, wheat, coarse cereals, pulses, and total foodgrains.

4.1. Result of ARIMA Model

Although ARIMA has been working as a good model for forecasting [47], the current
experiment with the ARIMA model gave relatively poor forecast results, as indicated in
Tables 1–5. Therefore, ARIMA has not been considered the best model based on the criteria
of MAPE and MSE. As shown in Table 6 the mean absolute percentage error (MAPE)
and the mean square error (MSE) values for wheat (MAPE:3.71 and MSE:339.78), rice
(MAPE:3.23 and MSE:260.77), coarse (MAPE:7.68 and MSE:201.08), pulses (MAPE:16.06
and MSE:272.83), and total (MAPE:2.83 and MSE:3082.6) with ARIMA is relatively higher
as compared to some of the other models.

Table 1. Results of the fitting value of wheat production in India.

Year Actual ARIMA (1,1,0) with Drift APE SutteARIMA APE H-W APE NNAR(1,1) APE

2014 959 960.08 0.11 969.68 1.11 959.96 0.10 934.12 2.59
2015 865 970.15 12.16 980.23 13.32 981.84 13.51 933.36 7.90
2016 923 985.99 6.82 912.37 1.15 1003.73 8.75 932.71 1.05
2017 985 999.61 1.48 960.48 2.49 1025.62 4.12 932.16 5.36
2018 999 1014.08 1.51 1005.33 0.63 1047.50 4.85 931.68 6.73
2019 1036 1028.22 0.75 1036.61 0.06 1069.39 3.22 931.26 10.10
2020 1076 1042.50 3.11 1058.55 1.62 1091.27 1.42 930.91 13.48
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Table 2. Results of the fitting value of rice production in India.

Year Actual
ARIMA (0,1,1)

with Drift
APE SutteARIMA APE H-W APE NNAR (1,1) APE

2014 1067 1034.46 3.05 1071.21 0.39 1037.96 2.72 1011.00 5.24
2015 1055 1047.62 0.70 1075.88 1.98 1052.62 0.23 985.60 6.57
2016 1044 1060.78 1.61 1058.25 1.37 1067.28 2.23 968.77 7.20
2017 1097 1073.93 2.10 1057.67 3.59 1081.94 1.37 957.16 12.74
2018 1128 1087.09 3.63 1097.28 2.72 1096.59 2.78 948.92 15.87
2019 1165 1100.25 5.56 1126.59 3.30 1111.25 4.61 942.96 19.05
2020 1184 1113.40 5.96 1159.76 2.05 1125.91 4.91 938.61 20.72

Table 3. Results of the fitting value of coarse production in India.

Year Actual
ARIMA (0,1,1)

with Drift
APE SutteARIMA APE H-W APE NNAR (2,2) APE

2014 433 398.64 7.93 412.19 4.81 416.32 3.85 387.98 10.39
2015 429 402.06 6.28 417.70 2.63 425.78 0.75 383.05 10.70
2016 385 405.48 5.32 419.04 8.84 435.23 13.05 380.02 1.29
2017 438 408.90 6.64 395.07 9.80 444.69 1.53 378.54 13.57
2018 470 412.31 12.27 426.96 9.16 454.15 3.37 377.66 19.64
2019 431 415.73 3.54 450.85 4.61 463.60 7.56 377.19 12.48
2020 475 419.15 11.76 433.78 8.68 473.06 0.41 376.92 20.64

Table 4. Results of the fitting value of pulses production in India.

Year Actual
ARIMA (0,1,1)

with Drift
APE SutteARIMA APE H-W APE NNAR (2,2) APE

2014 193 173.30 10.21 184.90 4.20 174.28 9.70 178.34 7.59
2015 172 174.63 1.53 185.82 8.03 175.71 2.16 178.53 3.80
2016 164 175.95 7.29 174.46 6.38 177.13 8.01 178.34 8.74
2017 231 177.28 23.26 167.75 27.38 178.56 22.70 178.33 22.80
2018 254 178.61 29.68 213.26 16.04 179.99 29.14 178.32 29.80
2019 221 179.93 18.58 232.74 5.31 181.41 17.91 178.32 19.31
2020 232 181.26 21.87 213.09 8.15 182.84 21.19 178.32 23.14

Table 5. Results of the fitting value of total food grain production in India.

Year Actual
ARIMA (0,1,1)

with Drift
APE SutteARIMA APE H-W APE NNAR (1,1) APE

2014 2650 2536.40 4.29 2621.95 1.06 2550.90 3.74 2534.96 4.34
2015 2520 2568.49 1.92 2644.35 4.93 2591.82 2.85 2506.17 0.55
2016 2516 2600.57 3.36 2548.88 1.31 2632.74 4.64 2482.89 1.32
2017 2751 2632.66 4.30 2565.91 6.73 2673.66 2.81 2463.88 10.44
2018 2850 2664.74 6.50 2727.00 4.32 2714.58 4.75 2448.24 14.10
2019 2852 2696.83 5.44 2830.45 0.76 2755.50 3.38 2435.30 14.61
2020 2966 2728.91 7.99 2848.49 3.96 2796.42 5.72 2424.52 18.26
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Table 6. Error values of models for wheat, rice, coarse, pulses, and total foodgrains.

Foodgrains Forecasting Models MAPE MSE

Wheat

ARIMA (1,1,0) with drift 3.71 339.78
SutteARIMA 2.91 294.93
Holt-Winters 5.14 520.84
NNAR (1,1) 6.74 912.86

Rice

ARIMA (0,1,1) with drift 3.23 260.77
SutteARIMA 2.20 106.32
Holt-Winters 2.69 180.96
NNAR (1,1) 12.49 3566.22

Coarse

ARIMA (0,1,1) with drift 7.68 201.08
SutteARIMA 6.93 153.24
Holt-Winters 4.36 85.20
NNAR (2,2) 12.67 586.46

Pulses

ARIMA (0,1,1) with drift 16.06 272.83
SutteARIMA 10.78 133.09
Holt-Winters 15.83 260.16
NNAR (2,2) 16.45 278.95

Total Foodgrains

ARIMA (0,1,1) with drift 4.83 3082.16
SutteARIMA 3.29 1652.90
Holt-Winters 3.98 1857.13
NNAR (2,2) 9.09 14,800.21

4.2. Result of SutteARIMA Model

In this study, the SutteARIMA model has performed as the best forecast model in
predicting wheat, rice, coarse, pulses, and total crops, as indicated in Tables 1–5. On the
other hand, the forecast error is relatively low and outstanding since the projected values
are near to the actual values and move in the direction of the forecasted values in many
instances, as demonstrated in Tables 1–5. In addition, MAPE and MSE values with the
SutteARIMA model were recorded relatively lower compared to ARIMA, Holt-Winter
(except coarse), and NNAR, as given in Table 6. The actual and predicted values are
presented in Tables 1–5, comparing all the models mentioned in the study. Hence, this
model has been selected as the best model to predict crop production for the next five years
(2021–2025). Figures 2–6 provide the graph for the predicted values of crops.
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Figure 2. Actual wheat versus predicted values using SutteARIMA and H-W.
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Figure 3. Actual rice versus predicted values using SutteARIMA and H-W.
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Figure 4. Actual coarse versus predicted values using SutteARIMA and H-W.
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Figure 5. Actual pulses versus predicted values using SutteARIMA and H-W.
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Figure 6. Actual total crops versus predicted values using SutteARIMA and H-W.

4.3. Comparison of SutteARIMA and Holt-Winters (H-W)

From the observed outcomes presented in Tables 1–5 and Figures 2–5, it is observed
that the forecasting exactness level of the SutteARIMA model compared with that of the
Holt-Winters (H-W) model is not quite significantly different from each other. It can
be argued that both models achieved good forecast performance. They were judged on
the prediction error (MAPE and MSE) for both models (SutteARIMA and Holt-Winters),
which came out pretty low as compared to ARIMA and NNAR models. The SutteARIMA
model was also found as the best method in several studies to forecast COVID-19 and the
stock price in Spain [35], to predict COVID-19 in the U.S. [36], and to predict COVID-19 in
world [37]. The Holt-Winters approach is one of the widely used forecasting techniques [38].
It was used to evaluate the movement in overall emissions of organic water contaminants as
well as the exposure of the textile industry to pollution in Eastern Europe [39]. It has ensured
the best predicting values for long-term and short-term thermal load forecasting [48].
However, the execution of the SutteARIMA model is better than the Holt-Winter model
in terms of forecasting accuracy in test data in the current study. Table 6 shows that the
SutteARIMA model is better than the Holt-Winters model for wheat, rice, pulses, and total
food grain production, whereas Holt-Winters performed well to predict coarse production
with lower MAPE (4.36) and MSE (85.20) values. Statistical tests were carried out, showing
no significant difference between the actual and predicted values of the SutteARIMA and
Holt-Winters models, as shown in Tables 1–5. Notwithstanding, SutteARIMA is still better.
Hence, this study further clarifies the contrary opinions reported in the literature about the
superiority of the SutteARIMA model over ARIMA, Holt-Winters, and NNAR models in
time series prediction.

4.4. Result of NNAR Model

MAPE and MSE values with the NNAR model were significantly higher compared to
ARIMA, SutteARIMA, and H-W. This finding agrees with some research studies; ARIMA
was found more accurate in forecasting the horizon-daily values of CO2 than NNAR [49],
in admission the NNAR model is considered inferior to H-W and ARIMA to predict
tourist arrival data [50]. However, in several studies, it performed quite well, including
unemployment rate prediction in Romania [51] and dengue epidemics [52].

Based on forecasting results, this study concludes that the SutteARIMA model is the
most suitable forecasting method to predict foodgrains production in India. The value of
MAPE, the least that of MSE value were verified. India’s SutteARIMA model was used to
predict foodgrains production from 2021–2025. The result of the forecast of SutteARIMA
is shown in Table 7. In addition, Table 7, presents the lower and upper value (99%) of
forecasting.
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Table 7. The SutteARIMA forecast for foodgrains (in lakh tonnes) from 2021 to 2025 in India.

Year
Wheat Rice Coarse Pulses Total Food Grain

F * U L F * U L F * U L F * U L F * U L

2021 1072.74 979.80 1165.69 1174.26 1124.20 1174.26 446.74 411.37 482.10 229.08 180.67 277.50 2894.25 2698.61 3089.90
2022 1089.59 973.35 1205.83 1188.76 1118.00 1188.76 451.67 416.30 487.03 236.803 186.89 286.72 2938.14 2674.80 3201.48
2023 1106.44 970.81 1242.08 1203.27 1116.58 1203.27 456.60 421.23 491.96 244.521 193.14 295.91 2982.03 2665.03 3299.03
2024 1123.29 970.66 1275.92 1217.77 1117.64 1217.77 461.53 426.16 496.89 252.239 199.41 305.07 3025.91 2663.01 3388.83
2025 1140.14 972.19 1308.09 1232.27 1120.28 1232.27 466.46 431.09 501.82 259.95 205.72 314.20 3069.80 2666.10 3473.52

* F-Forecasted Value, L-Lower value at 99%, U-Upper Value at 99%.

5. Conclusions

The observed results combined with published food grain data on the performance
of different prediction models SutteARIMA, ARIMA, Holt-Winters, and NNAR models
were used in this study. The performance of the SutteARIMA predictive model applied
in this study was compared with the conventional ARIMA, Holt-Winters, and NNAR
models, which were widely used for time series forecasting. Our findings reveal that
both the SutteARIMA model and the Holt-Winters model could achieve reliable forecasts
when applied to real-life problems. This helps further to effectively and profitably engage
food grain forecasting in India. The food grain prediction with the SutteARIMA approach
revealed superior performance over ARIMA, Holt-Winters, and NNAR models. Indeed,
the actual and predicted values of the SutteARIMA and Holt-Winters predictive model
are quite close in predicting food grain production in India. This has been verified by
MAPE and MSE values that are relatively low for the SutteARIMA model. India’s Sut-
teARIMA model has been used to predict food grain production from 2021 to 2025. The
forecasted amount of respective crops in lakh tonnes was predicted to be 1140.14 (wheat),
1232.27 (rice), 466.46 (coarse), 259.95 (pulses), and a total of 3069.80 (foodgrains) by 2025.

6. Policy Implication and Further Suggestion for Research

India enjoys the dubious distinction of being ranked the second most populated
country on the planet. Speculations are made that in the near future, India can supposedly
overtake China in the number of inhabitants. This presents a precarious condition as the
rising population will eventually place demand on foodgrains for human survival, and
it would necessarily be the responsibility of the State to provide the same. Hence, to feed
the huge population, there has to be a realistic attempt to understand what would be
the possible demand placed by the population. Predictions about foodgrains can assist
in understanding whether the current rate at which foodgrains are produced would be
adequate to meet the increasing demands. Accurate predictions of foodgrains is a herculean
task in the Indian context considering the volatile environment and extremely diverse soil
quality. The issues of predictions of foodgrains will be resolved if the appropriate method
is used. The SutteARIMA model was found to be a suitable method for predictions of
foodgrains in India. Moreover, it will assist in providing a baseline from which various
policymakers can seek to resolve future predictions of foodgrains while designing the
strategy. It is estimated that the world population will grow to 9 billion by the year 2050.

Consequently, there will be enormous challenges at the global level to produce a
significant amount of food as compared to the present scenario. In the given scenario, the
study would ideally help in accurately anticipating food grain production. This study
would essentially assist the policy makers/decision makers in designing special policies
in case of a serious mismatch between the demand placed for foodgrains by the ever-
increasing population and the predictions about the production of foodgrains. By and
large, these policy interventions would yield benefits for future studies and also for the
larger society. In the future, research combining this model with other methods, such as
the LSTM, RNN, decision tree, and reinforcement learning methods, can lead to better
forecasting accuracy. This research work has been conducted for academic and research
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only, and the predictions for the future are based on the premise that the existing restrictive
circumstances will remain.
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