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ABSTRACT. Climate change occurs due to an increase in greenhouse gases that accumulate 10 

in the atmosphere. Vegetation has an important role in reducing the impact of greenhouse gases as 11 

a carbon sink. This study aims to produce a regression model between the vegetation index using 12 

NDVI and the carbon stock of vegetation so that carbon stock can be identified easily from Sentinel 13 

2-A satellite imagery and analyze their spatial distribution in Southern Bali. The distribution of 14 

carbon stocks was analyzed using a combination of the vegetation index approach and statistical 15 

regression analysis. The vegetation index used is NDVI obtained from processing the Sentinel 2-16 

A satellite imagery in 2015 and 2021. The value of vegetation biomass values is derived from 17 

allometric equations. After getting the amount of biomass, a regression model was built with the 18 

vegetation index. The model with the highest level of accuracy is used to estimate the distribution 19 

of carbon stocks in Southern Bali. The results of this study indicate that the best regression model 20 

for predicting the value of carbon stock is a quadratic regression model with the NDVI vegetation 21 

index variable. The spatial distribution of carbon stocks in southern Bali is in line with the value 22 

of the vegetation index. The denser the vegetation index from 2015 to 2021, the higher the carbon 23 

stock in the region. 24 
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INTRODUCTION 44 

In the last few decades, environmental issues regarding global warming have become an issue 45 

and the center of public attention. Global warming is a threat to the survival of various ecosystems 46 

on earth (Abdullah, 2009). Global warming is a form of ecosystem imbalance characterized by an 47 

increase in the temperature of the atmosphere, sea, and land (Hasan, 2016). Climate change occurs 48 

due to an increase of greenhouse gases that accumulate in the atmosphere (Griggs, 2002). The 49 

greenhouse effect keeps the earth's temperature higher than direct heating by the sun (Kweku, et 50 

al, 2017). Mitigation of greenhouse gas emissions is carried out as an effort to reduce the negative 51 

impact of global warming (Wahyudi, 2016). Various efforts to mitigate climate change have been 52 

carried out, . Vegetation has an important role in reducing the impact of greenhouse gases as a 53 

carbon sink. Carbon sequestration is needed to reduce greenhouse gases in the atmosphere. 54 

Increased carbon stocks can reduce the impact of climate change (Nugroho, et al, 2012). On the 55 

other hand, the depletion of carbon stocks in an area causes an increase in greenhouse gas emissions 56 

(Setiawan, et al, 2020).  57 

Plants absorb carbon and store it in the form of biomass, so increasing carbon stocks value can 58 

be done by planting trees and keeping the land vegetated (Zikri, 2015). Monitoring of vegetated 59 

land needs to be done to determine carbon stocks in an area. Southern Bali, is in a strategic location, 60 

which is at the center of business and tourism growth, so this condition has a major impact on 61 

vegetated land in the four districts (Kurniawan, 2019). The conversion of land into built-up lands 62 

such as settlements, recreation, and tourism areas, trade and shopping centers, and industrial centers 63 

is increasing, especially in urban areas (Sinaga, et al, 2018). The spatial description of land use 64 

change in Bali Province shows that the areas experiencing the largest land use changes are the 65 

central to southern regions of Bali Province (As-syakur, 2011). In this study, the researcher used 66 

remote sensing methods to estimate the distribution of carbon stocks in Southern Bali. Remote 67 
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Sensing together with Geography Information System applications can provide quantitative 68 

information to determine the spatial distribution of vegetation (Giri, et al, 2008). To calculate the 69 

biomass estimation using remote sensing, it is done by connecting the biomass value obtained from 70 

the results of field measurements with the transformation of the vegetation index in the image 71 

(Nabila, 2019). The researcher uses the non-harvesting data collection method to collect vegetation 72 

biomass data and uses remote sensing and regression analysis to calculate the estimated carbon 73 

stock value because it is considered a potential method and also a practical method (Heumann, 74 

2011).  75 

Several previous studies related to carbon stock estimation were used as a reference in this 76 

study. Allometric equations for each type of vegetation were obtained in the research of (Marwah, 77 

et al, 2008) and (Nabila, 2019). Comparison of Landsat 8 OLI and Sentinel 2-A images for carbon 78 

stock estimation by (Astriani, et al, 2017). Research on forest carbon stock estimation was 79 

conducted by Widhi in Tesso Nilo National Park, Riau using Landsat 8 Imagery (Widhi, et al, 80 

2014). Research by Simarmata, Elyza, & Vatiady in 2019 to examine the use of SPOT 7 imagery 81 

to estimate carbon stocks in mangrove forests as an effort to mitigate climate change in South 82 

Lampung (Simarmata, et al, 2019). Research by Suhardiman & Mardiyatmoko in 2017 to estimate 83 

carbon stocks in the Tenggarong urban area using the NDVI method on Sentinel Image 2-A 84 

(Suhardiman, et al, 2017). Research by Frananda, Hartono, & Jatmiko in 2015 in comparing the 85 

vegetation index for the estimated carbon stock of mangrove forests in Alas Purwo National Park 86 

Banyuwangi, East Java (Frananda, et al, 2015). Research by Pambudhi, Murti, & Zuharnen to 87 

estimate forest carbon stock in Long Pahangai District, West Kutai Regency using Alos Avnir-2 88 

Image in 2012 (Pambudhi, et al, 2012). Research conducted by Nabila is also related to carbon 89 

stock estimation by using Sentinel 2-A imagery for the development of a model for estimating 90 

carbon stocks in vegetation stands in Kendari City (Nabila, 2019). The difference between this 91 

research with the previous researches in the previous researches just researched the distribution of 92 

carbon stocks in a region with a high accuracy model but did not research further to see carbon 93 

stock changes, so that in this study technically usability the geography information system was able 94 

to explain spatial phenomena that occurred in the research area. 95 

The aims of this study are: (1) determine the best regression model in estimating carbon stocks 96 

with the highest level of accuracy, and (2) map the distribution of carbon stocks in southern Bali. 97 

The difference in this study with previous research is the combination of the use of 2-A sentinel 98 

data statistical analysis to estimate carbon stocks and research about the carbon stock changes, so 99 

that this study technically use the geographic information system to explain the spatial phenomena 100 
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that occurred in the research area. The NDVI vegetation index data (Normalized Difference 101 

Vegetation Index) is used as the main input to estimate carbon stock by applying statistical 102 

regression for Southern Bali. 103 

MATERIALS AND METHODS 104 

Study Area and Variable 105 

The research location was conducted in Southern Bali which included Badung Regency, 106 

Gianyar, Tabanan, and Denpasar City. Geographically, the province of Bali is located on the island 107 

of Bali at114° 25' 53" - 115° 42' 40" BT dan 8° 3' 40" - 8° 50' 48" LS. The province of Bali consists 108 

of 8 districts and 1 city, named Tabanan, Badung, Gianyar, Jembrana, Klungkung, Bangli, 109 

Buleleng, Karangasem Regency, and Denpasar City (BPS, 2016). The satellite image data used in 110 

this study is the 2-A sentinel image obtained from USGS in March 2015 and 2021. The 2-A sentinel 111 

image has a wavelength ranging from 443 Nm to 2190 nm. These satellites are equipped with multi-112 

spectral instrument sensors (MSI) to measure a reflection of 13 spectral bands (Adini, 2018). 113 

Mapping land cover and vegetation density in Southern Bali 114 

Land cover classification is processed using the supervised classification method and 115 

maximum likelihood analysis. Supervised classification was chosen because it is considered to be 116 

easier to recognize particular objects. This classification technique is done using several pixel 117 

sampling methods for each class or object, so it gets the characteristics of pixels in each class or 118 

object. All pixels that are not used as samples will be grouped with pixel values of sample 119 

characteristics by applying statistical calculations (Kiefer & Lillesand, 1990). The classification of 120 

land cover is divided into 5 classification classes, which are waters, built area, forests, bare land, 121 

and agriculture (Badan Standardisasi Nasional, 2012).  122 

To process the land cover classification using supervised classification, the steps taken are to 123 

make the data training set become a classification reference. In this study, researchers took 30 124 

points of land cover training in each classification class with even distributions in Southern Bali. 125 

After classification, validation by comparing data training sets with 50-point accuracy test data 126 

divided into each classification class with even distribution. To map the vegetation density in 127 

Southern Bali, NDVI is the algorithm that used in this study to transform the vegetation index. 128 

NDVI is a signal processing algorithm used to observe the state of vegetation. Every vegetation 129 

density found a collection of varying individuals that cover the surface of the land [26]. NDVI has 130 

a value ranging from -1.0 to 1.0 (Arhatin, 2007). The transformation of the NDVI vegetation index 131 

is carried out by entering the formula or algorithm and calculated using Google Earth Engine. The 132 

results of the calculation of the NDVI value will then be used for regression analysis in determining 133 
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the model that has high accuracy and is used to estimate the value of carbon stock in southern Bali. 134 

The NDVI vegetation index is calculated on each pixel based on the difference between Band 4 135 

(Red) and band 8 (NIR). The calculation of the NDVI formula can be seen in equation 3 136 

(Khoirunnisa, et al, 2020). 137 

NDVI = (NIR-R)/(NIR+R) (3) 138 

NIR: near-infrared band; and R: red band 139 

To analyze the health of vegetation and density, the vegetation density class is divided into 5 140 

classes as in Table 1, which is non-vegetated area, very low, low, medium, high (Vision of 141 

Technology  (VITO), 2017). The calculation of the NDVI formula can be seen in equation 3 142 

(Khoirunnisa, et al, 2020). 143 

Table 1. Vegetation Density Class 144 

Class Density Class NDVI Value Land Cover 

1 Non-Vegetated Area -0,79 – 0,12 Waters, Bare Land 

2 Very Low 0,12 – 0,22 Built Area 

3 Low 0,22 – 0,42 Agriculture 

4 Medium 0,42 – 0,72 Agriculture 

5 High 0,72 - 1 Forest 

Source: Vision of Technology (VITO), 2017 145 

Data Normality Test 146 

The data normality test in this study needs to be done before making carbon stock distribution 147 

maps. It aims to see normality in field data obtained as a condition before conducting regression 148 

analysis. Regression analysis can be done if the data is normally distributed (Sukestiyarno, 2017). 149 

The normality test is used in this study to find out the variables that will be tested, namely the 150 

NDVI vegetation index and field carbon stocks are normally distributed or not. The normality test 151 

was carried out using the 5% test rate (α = 0.05) (Jonatan, 2018). The normality test is done by KS 152 

Test (Kolmogorov-Smirnov) using the SPSS application. The Kolmogorov-Smirnov test was used 153 

in this study due to the more appropriate Kolmogorov-Smirnov test used for samples of more than 154 

50 (Dahlan, 2009). This equation uses a hypothesis, namely, Ho is rejected or the data is not 155 

normally distributed if the P-value <0.05, while Ho is accepted if p-value> 0.05 or normal 156 

distribution data (Faradiba, 2020). Tests are carried out using the Kolmogorov Smirnov test with a 157 

formula in equation 4. 158 

KS = |Fn (Yi-1) – Fo (yi)|  (4) 159 

KS: The value of Kolmogorov-Smirnov; Fn (Yi-1): The frequency of the percentage of 160 

cumulative at the time before I; and Fo (yi): frequency of normal distribution data at the time i. 161 
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Carbon Stock Modelling 162 

Carbon stock models are carried out using regression analysis. The simple regression model 163 

was used in this study because this study only has one independent variable (x) (Hijriani, 2017). 164 

This regression model is used to express functional relationships between one or several 165 

independent variables (predictors) of one bound variable (response) (Imran, 2014). In regression 166 

analysis, estimates the parameters automatically estimate the regression model (Tarno, 2007). 167 

Some regression methods used for estimates are as follows (Hartono, 2011): 168 

a. Linear model 169 

y = a.x + b                 (5) 170 

b. Exponential model 171 

y = a.eb.x               (6) 172 

c. Logarithmic model 173 

y = a + b In(x)   (7) 174 

d. Quadratic model 175 

y = ax2+bx+c   (8) 176 

The regression model was chosen by Karnea assumed that there was a linear connection 177 

between carbon stocks and the vegetation index. The four regression models were chosen to be 178 

used in this study because the four models were previously studied in research related to the 179 

appropriate regression method for forecasting studied by Hermanto & Rizqika, 2019. The 180 

formation of the regression model is carried out using the SPSS (statistical product and service 181 

solutions) application. The model of carbon stock value is built using the NDVI pixel value. The 182 

selection of the regression model is best tested based on the R2 value obtained with equation 9 and 183 

the accuracy test with RMSE (Root Mean Standard Error) in equation 10. The regression method 184 

selected from this method is the regression method that produces the largest R2 value and the 185 

smallest RMSE value which will be used for the estimation of biomass and carbon stock in this 186 

study. 187 

R2 = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
 x 100% (9) 188 

Accuracy Test and Mapping of Carbon Stock 189 

       The model accuracy test is done by comparing the measurement data from field data samples 190 

with predictive data or regression models. Carbon stock field data is calculated using the allometric 191 

model to calculate plant biomass, and then the biomass value is converted into the carbon stock 192 

value. The RMSE value is obtained by conducting a validation test to determine the irregularities 193 

of the carbon value estimated based on the four regression models built with carbon stocks in the 194 
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field. A validation test is done to find out the model that has the best accuracy of all the models 195 

that have been built. The validation test is carried out with the RMSE test (Root Mean Standard 196 

Error), which is calculated using the formula in equation 10 (Syariz, 2015). 197 

 198 

RMSE =                  (10) 199 

 200 

y: field carbon stock; y ': carbon stock model; and n: sample point number. 201 

 After the accuracy test is carried out, the regression 202 

model that has the smallest RMSE value will be used to map the distribution of carbon stocks in 203 

southern Bali. The distribution of carbon stocks in southern Bali is obtained by entering the best 204 

regression equation (Wijaya, 2017). This calculation was carried out with a 2-A sentinel satellite 205 

image in the 2015 research year and 2021. 206 

RESULTS AND DISCUSSION 207 

Vegetation Indices Classification  208 

        The results of Sentinel-2A image processing with NDVI algorithm calculations produce pixel 209 

values ranging from 0 to 1. Fig. 1. shows that the Southern Bali region is dominated by medium to 210 

high vegetation density that dominates in the southern and north of the research area. Whereas the 211 

class of very low and low density dominates in the central part of the research area which includes 212 

Denpasar City and Central Badung Regency which covers Kuta District. The low-density class is 213 

also spread in the southern part of Badung Regency which includes South Kuta District and the 214 

southern part of Gianyar Regency. 215 

 
(𝑦 − 𝑦′)2

𝑛 − 2
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 216 

Fig. 1. Classification of Vegetation Density with NDVI 217 

Data Normality Test 218 

       Based on Table 2, it is known that the significance in the KS test is 0.200 and the SW test is 219 

0.564 which means greater than 0.05, so it can be said that the data is normally distributed with a 220 

significance value of more than 0.05. After the data used is known to be normally distributed, it 221 

can use the regression model. 222 

Table 2. Normality Test 223 

. Item Kolmogorov-Smirnova Shapiro-Wilk 

Statist

ic 

df Sig. Statist

ic 

df Sig. 

Unstandardized 

Residual 

0,064 100 0,200* 0,989 100 0,564 

Note: *. This is a lower bound of the true significance; and a. Lilliefors 

Significance Correction 

Carbon Stock Modelling by Vegetation Indices 224 

       The regression model was formed using the pixel values of the NDVI vegetation index. The 225 

models formed are as many as 4 models, namely linear, logarithmic, quadratic, and exponential 226 

models. Fig. 2.a shows the regression model between carbon stock and NDVI value using linear 227 
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regression has an R2 value of 0.854. Meanwhile, Fig. 2.b shows the logarithmic regression between 228 

carbon stock and the NDVI value has an R2 of 0.825. Fig. 2.c shows the quadratic regression 229 

between carbon stock and NDVI value, which has an R2 value of 0.854. Fig. 2.d shows the 230 

regression model between carbon stock and NDVI value using exponential regression has an R2 231 

value of 0.844. Based on this regression model, the linear and quadratic regression models have 232 

the highest R2 value between the other models. 233 

 234 

 235 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2.  (a) Linear Regression Model, (b) Logarithmic Regression Model, (c) Quadratic 236 

Regression Model, and (d) Exponential Regression Model 237 

Accuracy Test 238 

       Table 3 shows the results of the RMSE calculation of the carbon stock regression model. The 239 

four models each have an RMSE value which is 81.58 for the linear regression model, 88.79 for 240 

the logarithmic regression model, 81.28 for the quadratic regression model, and 99.20 for the 241 

exponential regression model. Based on the RMSE calculation between the 4 regression models 242 

and the field carbon stock, the lowest RMSE value was found in the quadratic regression model 243 
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which is 81.28. This value indicates that each carbon stock produced by the model has an average 244 

value difference of 81.28 or equal to 81.28 kg per 100 m2 in 1 plot size. 245 

The results of this data processing indicate that the best regression model for mapping the 246 

distribution of carbon stocks in Southern Bali is quadratic regression analysis with the model 247 

equation y = 21.591x2 + 1131.7x - 126.211. This regression analysis has a coefficient of 248 

determination (R2) of 0.854 and has the smallest RMSE value compared to the other three models, 249 

which is 81.28. 250 

 251 

Table 3. RMSE Calculation of Carbon Stock Regression Model 252 

No. Regression Model Model RMSE 

1. Linear y = 1153,49x - 130,994 81,58 

2. Logarithmic y = 512,643ln(x) + 841,558 88,79 

3. Quadratic y = 21,591x2 + 1131,7x - 126,211 81,28 

4. Exponential y = 80,137e3,105 99,20 

Source: Data processing, 2021 253 

Distribution of Carbon Stock in Southern Bali 254 

       Based on the calculation of carbon stock using a raster calculator on Sentinel 2-A images that 255 

have been transformed into Vegetation Density Class (NDVI) in Southern Bali 2015 and 2021, the 256 

carbon stock values range from 0 to more than 700 kg/pixel. The map of the carbon stocks 257 

distribution in Southern Bali 2015 (Figure 3) shows that carbon stocks in the range of 0-100 kg to 258 

200-300 kg dominate in Denpasar City and Central Badung Regency which includes Kuta District. 259 

Carbon stocks in the range of 200-300 kg and 300-400 kg are scattered in the southern part of 260 

Badung Regency which includes Kuta and Mengwi Districts, and in the southern part of Gianyar 261 

Regency. Carbon stocks in the range of 400-500 kg dominate in the southern part of Badung 262 

Regency, the eastern part of Badung Regency, and the southern part of Gianyar Regency. Carbon 263 

stocks in the range of 500-600 are scattered in the southern part of Badung Regency which includes 264 

South Kuta and Mengwi Districts, the eastern part of Tabanan Regency, and the southern part of 265 

Gianyar Regency. Carbon stock in the range of 600-700 to >700 dominates in the western and 266 

northern parts of Tabanan Regency, the northern part of Badung Regency, and northern part of 267 

Gianyar Regency. 268 
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 269 

Fig. 3.  Carbon Stock Distribution of Southern Bali in 2015 and 2021 270 

Source: Data Processing, 2021 271 

The map of the carbon stocks distribution in Southern Bali 2021 shows an increase of the 272 

carbon stocks value in Southern Bali which is marked by changes in light yellow and light green 273 

colors to green and dark green in the southern part of Badung Regency, decreasing dark orange and 274 

red colors to orange, light and yellow in Denpasar City, and a light yellow color change to light 275 

green in the eastern part of Tabanan Regency and the southern part of Gianyar Regency. The 276 

increase in carbon stock is also seen in the mangrove forest area in Benoa Bay which changes its 277 

color from green to dark green.  278 
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Table 4. Area of Carbon Stock Classification in 2015 and 2021 279 

Carbon Stock 

(Kg) 

Area (Ha) Area (%) 

2015 2021 2015 2021 

0-100 527,13 535,66 0,30 0,30 

100-200 3930,11 2331,71 2,23 1,32 

200-300 8982,87 6277,65 5,09 3,56 

300-400 13047,43 12165,183 7,39 6,89 

400-500 23237,89 21541,49 13,16 12,20 

500-600 36383,62 32469,02 20,61 18,39 

600-700 35737,44 37308 20,24 21,13 

>700 54692,133 63916,23 30,98 36,20 

Total 176538,623 176544,943 100 100 

Source: Data Processing, 2021 280 

The area of carbon stocks in 2015 and 2021 is shown in Table 4. The table shows a very 281 

visible dominance in the range of carbon stock values of more than 700 kg. Based on these data, 282 

this shows that the classification of carbon stocks that experienced changes in the area was mostly 283 

experienced in the range of  >700 kg which increased by 5.22% of the total area of the study area. 284 

 285 

Fig. 4. Changes of Carbon Stock Distribution in Southern Bali 2015 and 2021 286 

Source: Data Processing, 2021 287 
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The changes in Carbon Stock Distribution value in Southern Bali are classified into 3 288 

classification classes, namely increasing, constant, and decreasing (Fig. 4.). Changes in carbon 289 

stocks that have increased are found in the southern part of Badung Regency which includes South 290 

Kuta District, the southern part of Tabanan Regency, the southern part of Gianyar, and northern 291 

part of Denpasar City. Changes in carbon stocks that have decreased are found in the southern and 292 

eastern parts of Denpasar City, the northern part of Tabanan Regency, and spread in the northern 293 

part of Badung Regency, and the central to the northern part of Gianyar Regency. Data analysis 294 

using the overlay technique to see changes in carbon stocks is an advantage of this study, in 295 

previous studies conducted by Nabila [13]; Mardiyatmoko & Suhardiman [19]; Frananda, Hartono, 296 

Jatmiko [20] were only to map the distribution of carbon stocks in areas with high accuracy models 297 

but did not investigate further to see changes in carbon stocks so that in this study the technical use 298 

of Geographic Information Systems can explain spatial phenomena that occur in the research area. 299 

Table 5. Area of Carbon Stock Changes in 2015 and 2021 300 

Changes of Carbon 

Stock 

Area (Ha) 

Increased 59455,42 

Decreased 19247,34 

Constant 87454,78 

                                                  Source: Data Processing, 2021 301 

Overall, the results of processing data (Table 5) on the change of carbon stocks distribution 302 

shows that Southern Bali has a carbon stock that tends to increase. Carbon stocks that experience 303 

a constant value also tend to increase, this is because, under normal conditions, the age of 304 

vegetation will increase every year so that carbon stocks will continue to increase. The increase in 305 

carbon stock is in line with changes in the vegetation index from low to high, as shown in Figure 306 

1. 307 

CONCLUSIONS  308 

The best regression model to predict the value of carbon stock is a quadratic regression model 309 

with NDVI vegetation index variable. The regression model produces good predictive power and 310 

has good accuracy for estimating the spatial distribution of vegetation carbon stocks in Southern 311 

Bali. Overall, the carbon stocks value in Southern Bali tends to increase from 2015 to 2021 and the 312 
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spatial distribution of carbon stocks in Southern Bali is in line with the distribution of the vegetation 313 

index. The denser the vegetation index from 2015 to 2021, the higher the carbon stock in the region 314 
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