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Abstract. Shrimp farming industry experiences massive losses due to white faeces syndrome (WFS) 
infection. The virus causes oxidative damage in shrimp tissues, subsequently resulting in shrimp 
mortality within a relatively short time. This study aimed to evaluate the changes in antioxidant defence 
mechanisms and the level of protein oxidation and lipid peroxidation in the hepatopancreas, gills and 
flesh of WFS-infected Litopenaeus vannamei under laboratory conditions. The experimental animals were 
injected with WFS, and hepatopancreas, gill and flesh samples were collected at intervals of 0, 24, 48, 
and 72 hours post-infection. Lipid peroxidation, protein carbonyl contents, and antioxidant enzyme 
activities, including glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), 
were analysed in WFS-infected shrimps. Interestingly, protein carbonyl and lipid peroxidation as 
oxidative markers in the shrimp’s tissue were higher in infected organs than in uninfected controls. 
Additionally, a significant drop in GSH-Px activity was observed over the 72-hour period post-infection in 
all of the infected tissues analysed, with different trends observed for CAT-SOD activities. Thus, the 
results demonstrated that the endogenous antioxidant defences in WFS-infected shrimp failed to 
counteract the presence of excessive free radicals during the 72-hour period post-infection, leading to 
inactivation of enzymes in infected shrimp. 
Key Words: antioxidant enzymes, SOD, CAT, GSH-Px, lipid peroxidation, white faeces syndrome, 
shrimp. 

 
 
Introduction. Over the last two decades, the shrimp farming industry has emerged as a 
major player in the aquaculture industry. This industry offers significant employment 
opportunities, which may help alleviate the impoverished conditions of local coastal 
populations in many Asian countries (FAO 2008, 2016). In 2009, shrimp aquaculture 
contributed 42.2% of the total global shrimp production of 6.67 million tonnes (Pradeep 
et al 2012). Approximately 75% of the global farmed shrimp production occurred in Asian 
countries (FAO 2009). Furthermore, Walker & Winton (2010) reported that the total 
value of commercial shrimp species showed increasing trends and represented 17% of 
internationally traded seafood products. Farmed shrimps consist mainly of two species: 
black tiger shrimp (Penaeus monodon, Fabricius) and Pacific white shrimp (Litopenaeus 
vannamei, Boone). 

However, the high susceptibility of these two species to WFS results in enormous 
economic losses of commercially farmed shrimp. The virus has been recognized since 
1992 and has been shown to be the cause of massive die-offs of farmed shrimp in Asia 
(Durand et al 2000; Walker & Mohan 2009; Sanchez-Paz 2010). Several attempts have 
been made to control WFS infections, including the use of recombinant subunit vaccines 
(Witteveldt et al 2004) or DNA vaccines (Rout et al 2007; Johnson et al 2008), 
manipulating the water temperature (Rahman et al 2006), and treating shrimps with 
antiviral plant extracts (Peraza-Gomez et al 2009). However, these efforts have not 
provided encouraging results for the revival of black tiger shrimp farming. Currently, 
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there are no effective preventive treatments for WFS, even though various types of 
disinfectants are commonly applied in shrimp hatcheries and farms for the prevention of 
outbreaks (Chen et al 2011; FAO 2013; Byadgi et al 2014).   

Following WFS infection, the formation of oxygen free radicals and reactive 
oxygen species (ROS) rapidly increases (Mohankumar & Ramasamy 2006; Pacheco et al 
2011). ROS reacts with all main cellular components, thereby damaging tissues and 
causing oxidative stress-related damages, including oxidation of proteins and DNA, as 
well as peroxidation of unsaturated fatty acids in cell membrane structure (El-Beltagi et 
al 2011; Kobeasy et al 2011). However, shrimps have innate tissue defence systems, 
primarily made up of antioxidant enzymes. These enzymes are responsible for 
neutralising the effects of ROS by transforming the ROS into more stable compounds. 
The tissue antioxidant defence system, which consists of enzymatic and non-enzymatic 
components (β-carotene, ascorbic acid, glutathione and α-tocopherol) that neutralise the 
ROS produced during aerobic metabolism, is indispensable for the maintenance of redox 
homeostasis in the organism. The enzymatic components of this system include 
glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), 
glutathione-S-transferase (GST), and glutathione reductase (GR) (Ozturk et al 2008). 

SOD is an oxidoreductase involved in the catalysis of simultaneous reduction and 
oxidation of superoxide anion into oxygen molecules (O2) and hydrogen peroxide (H2O2) 
(Siddique et al 2013). Several isotypes of this enzyme are expressed, and are 
characterised by their redox-active metals in the catalytic site. The main role of CAT is 
eliminating excess hydroperoxide and sustaining cellular redox state. Interestingly, CAT 
does not require an electron donor, and it is only found in the peroxisome (Martins & 
English 2014). GSH-Px has been reported to be involved in fatty acid and hydroperoxide 
detoxification by catalysing the reduction of various hydroperoxides, thereby protecting 
biomembranes and many cellular components from the harmful effects of oxidative 
damage. In this reaction, glutathione acts as a reducing substrate to maintain proper 
physiological function and to prevent oxidative stress during phagocytosis (Arthur 2000; 
Liu et al 2004). 

Enzymatic antioxidants have the capacity to prevent the effects of oxygen free 
radicals and ROS in aerobic organisms, thus protecting cells from oxidative stress. 
However, infection with a pathogen induces inhibition of antioxidant enzyme activities 
(Narayan et al 2017). Hence, an understanding of the relationship between antioxidant 
enzyme activity and WFS infection is useful in developing comprehensive methods for 
controlling WFS in shrimp (Mohankumar & Ramasamy 2006). Therefore, this study aims 
to investigate the activities of SOD, CAT, GSH-Px, and lipid peroxidation in the 
hepatopancreas, flesh and gills of WFS-infected shrimps. 

 
Material and Method 
 
Experimental animals and rearing conditions. A total of 240 healthy adult L. 
vannamei (mean weight: 29.91±1.62 g each) were collected in April 2018 from 
commercial brackish water shrimp farms located in Barru Regency, Indonesia. The 
shrimp were then transported to the Fish Health Laboratory of Pangkep State Polytechnic 
of Agriculture, less than 1 hour after capture. Animal handling and sample collection were 
conducted in line with international guidelines and regulations. Shrimps were reared in 
separate 200 L fibre tanks containing 30% clean seawater (30 shrimp tank-1) and allowed 
to acclimate for a period of 7 days. 120 shrimps were used for experimental infection, 
and the remaining shrimps were kept as controls. Continuous aerations were supplied 
using air pumps and air stones, and the animals were fed commercial white shrimp diets 
(Gold Supreme, PT Gold Coin Indonesia). Water quality parameters such as temperature, 
dissolved oxygen level, pH, NH3-N, NO2-N, and NO3-N were recorded daily following 
standard protocols (APHA 2012). Uneaten feed and faecal material were removed daily, 
and 20% of the water volume was replaced every other day. A mechanical filter was set 
up to maintain the proper levels of water quality. The physiochemical properties of the 
water during the experimental period are shown in Table 1. After acclimation, 24 shrimps 
were randomly sampled to examine the health status of the animals. Diagnostic PCR 
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Primers for WFS were constructed based on Takahashi et al (1996). To ensure that the 
animals were free from WFS infection, confirmatory tests were conducted according to Lo 
et al (1996). 
 

Table 1  
The mean temperatures, dissolved oxygen concentrations, pH values, and ammonia, 

nitrite, and nitrate concentrations in the water during the experimental period 
 

Parameters Mean concentration 
Temperature (°C) 26.20±0.50 

Dissolved oxygen (mg L-1) 7.24±0.16 
pH  6.98±0.06 

Ammonia (mg L-1) 0.13±0.01 
Nitrate nitrogen (mg L-1) 1.60±0.02 
Nitrite nitrogen (mg L-1) 0.20±0.04 

 
Preparation of viral extracts. Preparation of the WFS extracts was performed 
according to the methods of Huang et al (2001), using cephalothorax tissue as a positive 
control for WFS PCR detection. The infected tissue was homogenised in TN (Tris-HCl, 
NaCl) buffer and centrifuged at 5000×g for 30 minutes at 4°C. The resulting supernatant 
was filtered through a 0.45 μm pore-size filter (Merck Millipore, Billerica, MA, USA) and 
then filtered through a 0.2 μm pore-size syringe filter (Sigma Aldrich, St. Louis, MO, 
USA). Aliquots were kept frozen at -80°C until use. Prior to storage, an estimation of 
total protein concentration of the filtrate was performed using the methods of Lowry et al 
(1951). The results of the previous study conducted by Pacheco et al (2011) 
demonstrated that intramuscular injection of WFS inoculum (20 μL total protein per 
shrimp) induced mortality up to 100% within 72 hours in brown shrimp (Farfantepenaeus 
californiensis). Thus, the 20 μL injection volume per shrimp was used to measure the 
activity of the enzyme until 72 hours post-injection. Five shrimps from each group were 
randomly sacrificed at different intervals (0, 24, 48, and 72 hours) post-injection to 
measure enzyme activity, lipid peroxidation and protein oxidation. The hepatopancreas, 
gills and flesh were collected from each shrimp. Measurements were performed in 
triplicate.  
 
Preparation of organ extracts for enzyme analysis. Organ extracts were prepared 
by following the methods of Ahmad et al (2000) with some modifications. The 
hepatopancreas, gills and flesh were dissected out, and the organs were weighed and 
homogenised separately in a chilled phosphate buffer (pH 7.0) containing KCl. The 
homogenate was passed through Miracloth (Calbiochem) filter paper and subjected to 
centrifugation (10,000×g) for 15 minutes at 4°C. The resulting supernatant was then re-
centrifuged (13,000×g) for 20 minutes at room temperature. The supernatants obtained 
from this centrifugation step were used for the enzyme assays. 
 
GSH-Px activity. Measurement of GSH-Px activity was based on the methods of 
Watanabe et al (1996), and Athar & Ikbal (1998). Analyses were performed separately 
for each organ extract. The reaction solution consisted of 1 mL of stock solution II (100 
mL of stock solution I, 0.1875 g GSH, and 0.011 g NADPH), 80 μL organ extract, 1 unit 
glutathione reductase, and 50 μL cumene hydroperoxide in a total volume of 1.1334 mL. 
Stock solution I consisted of 3 mM EDTA, 50 mM potassium phosphate buffer (pH 7.0), 
and 2 mM NaN3. GSH-Px activity was determined spectrophotometrically by measuring 
absorbance at 340 nm (Beckman DU 650 spectrophotometer).  
 
CAT activity. CAT activity measurement was performed based on the methods of 
Ardiansyah & Indrayani (2007). The enzyme activities in organ extracts were measured 
separately. As much as 100µL of each organ extract was added into a quartz cuvette 
containing a chilled phosphate buffer (pH 7.0) and 1.2 mL of 40 mM H2O2 in a total 
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volume of 3 mL. Decomposition of H2O2 was analysed using a spectrophotometer by 
measuring absorbance at 240 nm.  
 
SOD activity. SOD activity was determined spectrophotometrically according to the 
methods of Bannister & Calabrese (2006). The enzyme activities in the organ extracts 
were measured separately. One hundred microliters of organ extract were added into a 
quartz cuvette containing 0.3 mM NaCN (sodium cyanide), 1.5 mM NBT (nitro blue 
tetrazolium), 0.1 M EDTA, 50 mM potassium phosphate buffer (pH 7.8), 45 mM 
methionine, and 0.1 mM riboflavin in a total volume of 3.45 mL. The ability of the extract 
to inhibit SOD-dependent NBT reduction was estimated by measuring absorbance at 280 
nm.  
 
Lipid peroxidation assay. Lipid peroxidation was analysed by measuring thiobarbituric 
acid-reactive substances (TBARS), using malondialdehyde (MDA) equivalents (Siddique et 
al 2012). Determination of MDA concentrations was performed according to the methods 
of Eze et al (2008) using a standard curve based on the coloured product resulting from 
the condensation of thiobarbituric acid (TBA) with MDA. The homogenates were 
centrifuged (10,000×g) for 10 minutes at 4°C. The resulting supernatant from each 
sample was used for the lipid peroxidation assay. The supernatant and standard were 
evaluated simultaneously. To this end, 1400 µL stock solution (0.375% [w/v] TBA, 15% 
[w/v] trichloroacetic acid [TCA], and 0.25 N HCl) was added to the samples and 
standards, and 5% (w/v) butylated hydroxytoluene (BHT) was added. The mixture was 
then vortexed, heated at 100°C for 20 minutes, and cooled at room temperature for 30 
minutes. Once cool, samples and standards were centrifuged at 13,000×g for 15 
minutes. Subsequently, the resulting supernatants were analysed spectrophotometrically 
at 532 nm.  
 
Protein carbonyl assay. Measurement of protein oxidation in shrimp tissue was based 
on the modified methods of Weber et al (2015) with some modifications. The tissue 
samples were mixed with 100 mL of cell lysis reagent and incubated for 10 minutes at 
room temperature. The sample was vortexed and centrifuged at 17,000 rpm for 15 
minutes. The supernatants (cell lysate) in a 50 mM potassium phosphate buffer (pH 7.2) 
were mixed with 4 mL of 2.5 M HCl DNPH. The blank sample was mixed with 2.5 M HCl 
and incubated for 1 hour in the dark. Protein was precipitated with 6 mL of 20% 
trichloroacetic acid (TCA) and washed with 5 mL of ethanol: ethyl acetate mixture (1:1). 
The protein pellet was dissolved in 2 mL of 6 M guanidine hydrochloride.  
 
Statistical analysis. The results are expressed as the mean±standard error (SE). Data 
was statistically analysed with SPSS 22 (IBM SPSS Advanced Statistics 22). The 
differences between group means were analysed by one-way ANOVA, followed by Tukey’s 
honestly significant difference (HSD). Differences were reported as statistically significant 
when p values were less than 0.05 (p < 0.05). 
  
Results and Discussion. All experimental shrimps injected with the viral extract were 
susceptible to WFS infection. Observations indicated that there was a sudden reduction in 
food consumption, and the shrimp became lethargic, exhibited disorientation during 
swimming, and showed reddish discoloration of the cuticle. At 72 hours post-infection, 
82% of infected shrimps had died. Clinical signs of WFS in shrimp include dramatically 
decreased appetite, lethargy, collapse of the cuticle, discoloration of the shrimp body, 
and the appearance of white spots, ranging from 0.5 to 2 mm in diameter, on the 
carapace, appendages, and cuticle (Sriurairatana et al 2014). Pathogenic infection 
induces membrane lipid peroxidation, which is closely associated with some specific 
functions, such as digestion, absorption, and detoxification (Pan et al 2003). Thus, 
accumulation of these insults causes damage that eventually leads to death within a 
relatively short time after infection.  

Variations in the activities of SOD in the hepatopancreas, gills and flesh of WFS-
infected L. vannamei and control shrimp at different stages of infection are shown in 
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Figure 1. Injection of the viral extract into L. vannamei elevated SOD activities in the 
hepatopancreas, gills and flesh to 0.53, 0.46, and 0.44 U·mg-1 of protein respectively, at 
24 hours post-infection. The rate of elevation was significantly lower at 48 hours and fell 
to baseline levels below that of the control group at 72 hours post-infection. No 
significant changes (p > 0.05) in SOD activity were observed in the control shrimp.   
Elevations in CAT activities were observed in infected shrimp at 24 hours following viral 
infection. The rate of elevation was significantly lower (p < 0.05) at 48 hours and then 
fell below that of the control group at 72 hours post-injection. No significant changes (p 
> 0.05) in CAT activity were observed in the control group (Figure 2). Increased CAT-
SOD activities may indicate a higher need to destroy ROS (Arun & Subramanian 1989). 
Campa-Cordova et al (2002) reported a similar increase in SOD activity in tissues from 
white shrimps infected with Vibrio parahaemolyticus at 18 and 24 hours post-infection, 
potentially indicating that oxidative stress was increased due to the presence of the 
superoxide anion radical. Increased SOD activity may also indicate a higher capacity to 
avoid cytochrome c reduction by O2

-·. This suggests that the capacity of SOD to prevent 
cellular damage is decreased (Neves et al 2000).   

 

 
Figure 1. Variations in SOD activity in the hepatopancreas, gills, and flesh of WFS-infected 

L. vannamei and control shrimp. Same superscripts mean no significant differences (p > 0.05). 
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Figure 2. Variations in CAT activity in the hepatopancreas, gills, and flesh if WFS-infected 

L. vannamei and control shrimp. Same superscripts mean no significant differences (p > 0.05). 
 
CAT activity in infected tissues was increased at 48 hours post-infection, which was in 
agreement with the findings of Parilla-Taylor et al (2013). Increased CAT activity may 
occur in an attempt to eradicate excessive free radicals generated from WFS infection, 
which can result from an ongoing increase in damage to ectodermal and mesodermal 
cells of the shrimp (Rajan et al 2000; Wang et al 2017). However, SOD and CAT activities 
later decreased in all infected tissues at 72 hours post-infection. Chang et al (2003) and 
Mohankumar & Ramasamy (2006) reported that the activity of CAT-SOD decreased 
significantly in the hemolymph, hepatopancreas and flesh following WFS infection in P. 
monodon. Interestingly, viral infection seems to trigger significant changes in cellular 
activity, leading to dysfunction of the complex antioxidant defence system. Indeed, in our 
study, failure of the antioxidant defence system, which was noted during the later stages 
of infection, clearly indicated that the tissue antioxidant defence status during WFS 
infection in L. vannamei was operating at a lower rate, despite the increased need for 
antioxidant defences to neutralise the increased production of free radicals. Decreased 
CAT-SOD levels may lead to a reduced capacity to neutralise ROS and an increased 
susceptibility to oxidative stress. Wang et al (2010) reported that the decrease in SOD 
activity may be due to the consumption of this enzyme during the conversion of O2

-· to 
H2O. This result indicates that SOD itself was damaged because of the high levels of ROS 
generated in shrimp tissues. Such reduced enzyme activities would allow the 
accumulation of oxidative damage and ROS, promoting symptoms of the viral infection.   
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Variations in GSH-Px activities are shown in Figure 3. The enzyme activity was 
lower in infected shrimp than in control shrimp for the 72 hour experimental period. GSH-
Px activity initially fell to below control values by 24 hours after viral challenge and then 
continued to decline throughout the remaining study period. At 72 hours, the activities of 
the enzyme in the hepatopancreas, gills and flesh of infected shrimp were 0.40, 0.38, 
and 0.44 U·mg-1 protein, respectively, below the control values. No significant differences 
(p > 0.05) were observed in the control group over the 72 hour study period. These 
results differ from a previous study on WFS-resistant P. japonicus (He et al 2005). A 
substantial decrease in GSH-Px activity 24 hours after virus challenge may indicate 
increased levels of H2O2 and lipid hydroperoxide in shrimp cells, which may be caused by 
the lower scavenging abilities of SOD and CAT (Searle & Wilson 1980; Fijałkowski et al 
2018). Reduction in GSH-Px activity causes the lipid environment of cellular and 
subcellular membranes to be more susceptible to oxidative damage, leading to the 
production of oxidized glutathione and other disulfides (Espinosa-Diez et al 2015). 
Sustained reduction of GSH-Px activity over 72 hours post-infection may also indicate 
higher formation of singlet oxygen (1 O2) and H2O2, which in turn form the hydroxyl 
radical (OH-) and carry a number of adverse reactions to the shrimp’s cell membranes 
(Fridovich 2004). This data suggests that GSH-Px is essential for initial elimination of 
various hydroperoxides before the involvement of another endogenous antioxidant. 

 

 
Figure 3. Variations in GSH-Px activity in the hepatopancreas, gills, and flesh of WFS-infected  

L. vannamei and control shrimp. Same superscripts mean no significant differences (p > 0.05). 
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TBARS is an indicator of oxidative damage in the hepatopancreas, gills, and flesh 
in infected and uninfected shrimp. Formation of TBARS (nmol MDA·mg-1 protein) in 
shrimp organs over time is shown in Figure 4. Overall, TBARS values increased over time 
in infected shrimp, while no significant variations (p > 0.05) were observed in the control 
group. The highest TBARS values in the hepatopancreas, gills, and flesh of infected 
shrimp were recorded at 48 and 72 hours post-infection. At this time, the TBARS values 
in infected tissues were about three times higher than those in the control group.  

 

 
Figure 4. Formation of TBARS as an indicator of oxidative damage in response to WFS infection in 

the hepatopancreas, gills, and flesh of L. vannamei. Same superscripts mean no significant 
differences (p > 0.05). 

 
Protein oxidation, as measured by protein carbonyl (PC) content, is an important 
indication of cellular injury. Different trends were observed in the levels of PC in organs 
from infected shrimp. The initial level of protein oxidation was around 0.287 nmol·mg 
protein-1. This basal level of PC content was also observed in uninfected organs. 
Increased PC levels were present at 24 hours after virus challenge, reached a maximum 
level of nearly twice that of the control, and then slightly declined until 72 hours post-
infection (Figure 5). No significant differences (p > 0.05) were detected in the control 
group. Subramanian & Philip (2013) reported a similar increase in oxidative stress in 
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terms of hydroperoxide, conjugated diene, and MDA concentrations in various tissues of 
Fenneropenaeus indicus. This may be indicative of increased production of peroxides that 
damage all of the biomolecules present in cellular and subcellular membranes, including 
lipids. Increased formation of lipid peroxides is recognized to damage the integrity of 
cellular membranes, which in turn causes the leakage of cytoplasmic enzymes (Bagchi et 
al 1995). In this study, increased CAT-SOD and decreased GSH-Px activities were 
followed by the induction of lipid peroxidation. This supports these previous works. 

 

 
Figure 5. Formation of protein carbonyls in response to WFS infection in the hepatopancreas, gills, 

and flesh of L. vannamei. Same superscripts mean no significant differences (p > 0.05). 
 

High concentrations of peroxide, coupled with the failure of the antioxidant system, 
caused increasing damage; this process was initiated by viral infections (Dandapat et al 
2003; Abele & Puntarulo 2004). Failure of the antioxidant system led to increased lipid 
peroxidation and tissue damage. This finding is important because lipid peroxides 
themselves are free radicals with large reaction constants and can therefore cause 
oxidative damage associated with cell death (Kidd 1991; Gaschler et al 2017). Lipid 
oxidation, which is initiated by ROS, is a free radical chain reaction that has very 
dangerous effects on the survival of the organism. Therefore, it is important to 
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understand how lipid peroxidation contributes to the clinical signs and mortality in WFS-
infected shrimp. 

Many studies have demonstrated that PC content is closely related to lipid 
oxidation in aquatic animals (Heise et al 2006; Castex et al 2010; Pazos et al 2011; 
Estévez 2011). Elevated oxidative stress in the cell membrane is followed by higher 
levels of lipid and protein oxidation. In the present study, even though viral challenge 
caused an upward trend in lipid peroxidation over 72 hours, PC contents did not follow 
the same trend. However, because the test was generally used for evaluation of PC levels 
of protein damage (Mercier et al 2004; Estévez & Xiong 2019), this test has limited 
ability to detect the destruction of certain amino acids. Therefore, our results indicated 
that the formation of PC was limited to a specific carbonyl group on certain amino acids 
and did not represent the complete oxidative phenomena. Oxidatively modified proteins 
may change the structural arrangement of protein, leading to inactivation of many 
enzymes (Reznick & Pecker 1994). Thus, some of the virus-induced changes in protein 
structure and function may not be detected using the PC assay, suggesting that other 
amino acid groups may not be not oxidised to form carbonyls.    

Data demonstrated that organs from infected shrimp had higher levels of lipid and 
protein oxidation, as well as CAT-SOD activities, than those in the control group. 
Differences in the antioxidant defence status and oxidative damage between the two 
groups of shrimp were significant. Moreover, the observation of increased lipid 
peroxidation over the 72 hour study period may indicate a significant increase in 
oxidative damage in the cell membrane. These results were confirmed by increasing 
protein oxidation levels in infected organs, although the PC content showed an opposite 
trend at 24 hours after viral challenge. Moreover, the activities of SOD and CAT in the 
hepatopancreas, gills and flesh of WFS-infected L. vannamei were rapidly increased 
following WFS injection, possibly due to the increase in the number of virus particles in 
the infected ectodermal and mesodermal tissues. However, the reduced activity of GSH-
Px in the organs of infected shrimps may be explained by the observation that various 
hydroperoxides produced in the cell membrane are initially and mainly metabolised by 
GSH-Px.   

 
Conclusions. Oxidative stress occurred over the course of WFS infection, as 
demonstrated by increased lipid peroxidation and PC content. Oxidative stress induced 
biochemical changes in the hepatopancreas, gills and flesh of WFS-infected L. vannamei. 
Increased lipid peroxidation and PC content altered antioxidant defences and triggered 
changes in SOD, CAT and GSH-Px activities. Alterations in antioxidant defences can 
either induce or suppress enzymes. Data showed that CAT-SOD and GSH-Px activity were 
inversely proportional. Alterations in antioxidant defences may also be relevant to the 
ability of the hepatopancreas and other investigated organs to cope with oxidative stress 
during the viral infection. Higher CAT-SOD activities were observed in the 
hepatopancreas, while higher GSH-Px activity was recorded in the gills. Elevated 
oxidative stress appeared to increase the amount of carbonylation present in the 
investigated tissues. Differences were noted in the extent of carbonylation between 
infected and uninfected control groups. However, our study showed that upward trends in 
lipid peroxidation were not correlated to the measurements of protein oxidation. This 
demonstrated that oxidative modification of proteins might generate various oxidized 
products that may not be detected through PC assays. Thus, further studies are required 
to identify other, more comprehensive approaches that can be used to precisely measure 
oxidized proteins during viral infections.  
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