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Abstract: A number of previous studies on Covid-19 have used 

Bayesian spatial Conditional Autoregressive (CAR) models. 

However, basic CAR models are at risk of over-smoothing if 

adjacent areas genuinely differ in risk. More complex forms, 

such as localised CAR models, allow for sudden disparities, but 

have rarely been applied to modelling Covid-19, and never with 

covariates. This study aims to evaluate the most suitable 

Bayesian spatial CAR localised models in modelling the number 

of Covid-19 cases with and without covariates, examine the 

impact of covariates and spatial priors on the identified clusters 

and which factors affect the Covid-19 risk in South Sulawesi 

Province. Data on the number of confirmed cases of Covid-19 

(19 March 2020 -25 February 2022) were analyzed using the 

Bayesian spatial CAR localised model with a different number 

of clusters and priors. The results show that the Bayesian spatial 

CAR localised model with population density included fits the 

data better than a corresponding model without covariates. 

There was a positive correlation between the Covid-19 risk and 

population density. The interplay between covariates, spatial 

priors, and clustering structure influenced the performance of 

models. Makassar city and Bone have the highest and the lowest 

relative risk (RR) of Covid-19 respectively. 

 

1. INTRODUCTION  

The spread of the Coronavirus disease 2019 (Covid-19) epidemic continues to 

increase worldwide. On March 2nd, 2020, the first Covid-19 case was reported in Indonesia. 

Within two years, by February 25th, Indonesia had recorded 5,457,775 confirmed Covid-19 

cases, 4,736,234 people recovered, and 147,586 deaths (http://covid19.go.id/). In South 

Sulawesi province, a total of 131,826 confirmed Covid-19 cases were reported in this period.  

A number of previous studies have modelled Covid-19 using a Bayesian spatial 

Conditional Autoregressive (CAR) considering socioeconomic influences. The association 

of socioeconomic, and environmental variables with the incidence of Covid-19 in the 30 

provinces in mainland China has been identified using a Bayesian spatial CAR Besag, York 
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& Mollié (BYM) model (Peng et al., 2022). Their results suggested that the risk of Covid-

19 was positively correlated with the economic development level and population 

movements. Whittle and Diaz-Artiles (2020) also used a Bayesian spatial CAR BYM to 

assess the relationship between the number of Covid-19 cases in New York City and 

socioeconomic factors and found significant associations with population density, race, and 

household income. A study in Columbia used a Bayesian spatial CAR Leroux model to 

model Covid-19 considering the index of multidimensional poverty, which significantly 

influenced the inequalities risk of dying from Covid-19 (Polo, Soler-Tovar, Villamil 

Jimenez, Benavides-Ortiz, & Mera Acosta, 2022). 

Bayesian spatial CAR models have also been used to examine population density and 

distance to cities in several places. A Bayesian spatial CAR Leroux examined these factors 

in South Sulawesi Province and found that population density was positively correlated with 

the risk of Covid-19 (Aswi & Sukarna, 2022). A Bayesian spatial CAR Leroux has also been 

used to examine the association of population density and the distance to the city with the 

risk of Covid-19 in Makassar city (Tiro, Aswi, & Rais, 2021). However, since Makassar city 

covers only a small area, the results differed. They concluded that population density was 

not statistically correlated with the relative risk of Covid-19, but the distance to the capital 

city was negatively correlated with the risk of Covid-19. Another study has investigated the 

association between population density, distance from the virus epicenter and the Covid-19 

incidence in Iranian Provinces by using linear regression analysis (Dadar, Fakhri, Bjørklund, 

& Shahali, 2020). Their results showed that the association between population density and 

the Covid-19 incidence was not statistically significant, but the incidence of Covid-19 was 

strongly negatively associated with the distance from the virus epicenter. The results 

regarding the association of population density and Covid-19 are location-specific. 

While a number of studies have evaluated the effect of population density and 

distance to the capital city, to our knowledge, the Bayesian spatial CAR localised model has 

not been used in modeling Covid-19 considering covariates. The Bayesian spatial CAR 

localised model has been explored in modelling Covid-19 risk in South Sulawesi Province 

(Aswi, Mauliyana, Tiro, & Bustan, 2022), but it did not include covariates in the model. This 

study aims to evaluate the most suitable Bayesian spatial CAR localised models in modelling 

the number of Covid-19 cases with and without covariates (the distance to the capital city 

and population density) in South Sulawesi Province and examine the impact of covariates 

and spatial priors on the identified clusters. Factors that affect the risk of Covid-19 in South 

Sulawesi Province also were identified. 

 

2. LITERATURE REVIEW 

2.1. Spatial Dependence 

Moran’s I is the common indicator used to measure the degree of spatial dependence 

(Moran, 1950) in ordinal and interval data. Moran’s I can be used on raw data or fitted counts 

to check for spatial autocorrelation, and on residuals from a spatial model to check model 

goodness of fit (if the model accounted for the spatial structure appropriately then Moran’s I 

should be close to 0). 

Moran’s I is computed as the ratio of spatial covariation to the total variation where 

values range from -1 to +1. The positive value indicates positive spatial dependence, while 

the negative value indicates negative spatial dependence, and the 0 value indicates no spatial 

dependence.  
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Moran's I statistics are calculated as follows: 

𝐼 =
𝑛 ∑ ∑ 𝜔𝑖𝑘(𝑌𝑖 − �̅�)(𝑌𝑘 − �̅�)𝑛

𝑘=1
𝑛
𝑖=1

∑ ∑ 𝜔𝑖𝑘(𝑌𝑖 − �̅�)2𝑛
𝑘=1

𝑛
𝑖=1

   

where 𝑛 is the number of locations, 𝑌𝑖 and 𝑌𝑘 are the observed value in the particular location 

i and another location k, �̅� is the average of all the 𝑋 values over the 𝑛 locations, 𝜔𝑖𝑘 is the 

spatial connectivity/weight matrix.  

As Moran's I tend to underestimate spatial autocorrelation when there are less than 

100 areas, a modified Moran’s I (MMI) was developed (Carrijo & Da Silva, 2017) to detect 

spatial dependence which works even for a few areas. MMI statistic is calculated as follows: 

𝐼Mod =
∑ (𝑌𝑖 − �̅�)(∑ 𝒘𝒊𝒌𝑌𝑘 − �̅�)𝒏

𝒌=𝟏
𝒏
𝒊=𝟏

[∑ (𝑌𝑖 − �̅�)𝟐𝒏
𝒊=𝟏 ]𝟏/𝟐 [∑ (∑ 𝒘𝒊𝒌𝒀𝒌 − �̅�𝒏

𝒌=𝟏 )
𝟐𝒏

𝒊=𝟏 ]
𝟏/𝟐

  

A detailed explanation of MMI can be seen in some works of literature (Aswi, 

Cramb, Duncan, & Mengersen, 2021; Carrijo & Da Silva, 2017). 

2.2.  Relative Risk 

The Standardised Incidence Ratio (SIR) is calculated by dividing the number of 

Covid-19 (𝑦𝑖) cases with the number of expected cases in each area (𝐸𝑖). The expected 

number of Covid-19 cases is here calculated as the overall incidence rate for the entire South 

Sulawesi Province multiplied by the population at risk in each location (𝑝𝑜𝑝𝑖) and it is given 

as follows: 

𝐸𝑖 =
∑ 𝑦𝑖𝑖

∑ 𝑝𝑜𝑝𝑖𝑖
𝑝𝑜𝑝𝑖  

Usually, this would be calculated by age groups and summed together, but data by age were 

not available.  

In estimating the relative risk (RR) across small areas, Bayesian methods such as 

Bayesian hierarchical models are preferred rather than raw SIRs as they are able to 

incorporate information from neighboring locations through prior distributions as well as 

adjust for covariates in the model.  

2.3. Bayesian Hierarchical Models 

Bayesian Hierarchical models include random-effects models, multilevel models, 

and generalised linear (mixed) models (Ntzoufras, 2011). In a hierarchical Bayesian model, 

the parameter distributions are conditional on parameters existing at the next level of the 

hierarchy. Several advantages of the hierarchical model are (1) they enable increased 

robustness of Bayes estimators (Robert, 2007); (2) They allow for sharing of information 

across experimental units (Gelman, 2013), and (3) they enable easy construction of 

complicated models (Mugglin, Cressie, & Gemmell, 2002). 
 

3. MATERIAL AND METHOD  

3.1. Study Area 

South Sulawesi Province is located between 0°12’ and 8° South latitude, and between 

116°48’ and 112°36’ East longitude. It consists of 24 districts, three of which are cities: 

Makassar (capital city), Palopo, and Pare-Pare. The area of South Sulawesi Province is 

46717.48 km2 with a population of 9.074 million in 2020, equating to an average population 
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density of 640.88 people per km2 (Badan Pusat Statistik, 2021). Makassar city has the highest 

population density (8100.80 people/km2), while Luwu Timur has the lowest population 

density of 42.73 people/km2 (Badan Pusat Statistik, 2021). Luwu Timur has the longest 

distance to Makassar city (565 km) while Makassar has the shortest distance (0 km), 

followed by Gowa (11 km)  (Badan Pusat Statistik, 2015). 

3.2. Data 

Data on the number of confirmed cases of Covid-19 (19 March 2020 -25 February 

2022) for each of the 24 districts used in this study was obtained from the official website 

“Ministry of Health of the Republic of Indonesia” https://infeksiemerging.kemkes.go.id/. 

Data on population numbers were from the Badan Pusat Statistik (Badan Pusat Statistik, 

2021) and used to calculate the expected counts. Population density data in each district 

(Badan Pusat Statistik, 2021) and the distance to the capital city of South Sulawesi Province 

(Badan Pusat Statistik, 2015) were used as covariates. 

3.3. Model Formulation 

In this paper, the Bayesian spatial CAR localised model (Lee & Sarran, 2015) was 

used to estimate the risk of Covid-19 and examine the clusters of Covid-19 cases with and 

without covariates. The population density of each district is calculated as the ratio of the 

number of populations in each area to the corresponding area. 

The Bayesian spatial CAR localised model has two key components, namely a spatial 

random effect (𝑢i) and the clustering components (𝜆𝑍𝑖
) which enables neighbourhood 

random effects different over locations. The locations are partitioned into a pre-specified 

maximum of G clusters and include a cluster-specific mean in the model. A Poisson log-

linear model, as is commonly used for mapping the relative risk of diseases (Aswi, Cramb, 

Moraga, & Mengersen, 2019) was used to model the number of confirmed Covid-19 cases 

(𝑦𝑖) as follows: 

𝑦𝑖~Poisson(𝐸𝑖𝜃𝑖) for i = 1, 2, 3, …, 24 locations  

𝑙𝑜𝑔(𝜃𝑖) = β0 + β1X1 + β2X2 + 𝑢𝑖 + 𝜆𝑧𝑖  

where 𝐸𝑖 is the number of expected cases, and 𝜃𝑖 is the relative risk in the 𝑖th location. β0 

is the overall level of RR, while β1 and β2 are the covariate coefficients. The spatial 

structured random effect is modelled using an intrinsic conditional autoregressive prior as 

follows: 

(𝑢𝑖|𝑢𝑘 , 𝑖 ≠ 𝑘, 𝜏𝑢
2)~𝑁 (

∑ 𝑢𝑘𝜔𝑖𝑘𝑘

∑ 𝜔𝑖𝑘𝑘
,

𝜏𝑢
2

∑ 𝜔𝑖𝑘𝑘
)  

where 𝜔𝑖𝑘 is the spatial weight matrix defined using binary spatial matrix and first-order 

adjacency weight matrix. A sensitivity analysis was performed by using four hyperpriors on 

the variance component 𝜏𝑢
2 namely: Inverse-Gamma IG (1, 0.01) as the default hyperprior 

of CARBayes, IG (1, 0.1), IG (0.5, 0.0005), and IG (0.001, 0.001). 

The locations are partitioned into maximum G clusters and include a cluster-specific 

mean in the model. Cluster G has its own form of intercept which is ordered as 1 < 2 < … 

< G. 

k ~ Uniform (k-1, k+1) for k = 1, 2, …, G  

where 𝜆0 = −∞ and 𝜆𝐺+1 =  +∞ 

A variable 𝑍𝑖 assigns the allocation of the 𝑖th location to a cluster, 

https://infeksiemerging.kemkes.go.id/
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𝑓(𝑍𝑖) =
exp(−𝛿(𝑍𝑖 − 𝐺∗)2)

∑ exp(−𝛿(𝑟 − 𝐺∗)2)𝐺
𝑟=1

  

where 𝛿 ~ Uniform (1, 10); 

If G is odd then 𝐺∗ =
G+1

2
, while if G is even then 𝐺∗ =

G

2
. It is recommended that G is small 

and odd numbers (Lee & Sarran, 2015). 

A set of combination model formulations were used to examine the interplay between 

the number of clusters, covariates, and spatial priors. We choose different spatial CAR 

localised models allowing a maximum of two, three, and five clusters with and without 

covariates included, using different priors.  

All analyses were conducted in R software version 4.1.2 (R Core Team, 2019) using 

the CARBayes package version 5.2.5 (Lee, 2013) to estimate model parameters. We 

generated Markov chain Monte Carlo (MCMC) samples based on 20,000 iterations with 

12,000 MCMC samples collected after a burn-in of 8,000 samples. A visualization of 

MCMC trace and density plots was performed to check the MCMC convergence. 

The goodness-of-fit of model formulation and combination of covariates were 

compared using the Deviance Information Criterion (DIC) (Spiegelhalter, Best, Carlin, & 

Van Der Linde, 2002), Watanabe Akaike Information Criterion (WAIC) (Watanabe, 2010), 

MMI (Aswi et al., 2021; Carrijo & Da Silva, 2017) for the residuals, and considering whether 

the 95% posterior credible interval contains zero. A smaller value of DIC, WAIC, and MMI 

for residuals indicates a better model fit. R code used in this study is available upon request. 

 

4. RESULTS AND DISCUSSION 

4.1. Descriptive Analysis 

A total of 131,826 positive confirmed Covid-19 cases in the Province of South 

Sulawesi (March 19, 2020- February 25, 2022) were identified with a mean (5,057), median 

(2,522), and variance (121,218,441). The lowest numbers of confirmed Covid-19 cases were 

in Enrekang (805 cases), Selayar (1,303 cases), and Bantaeng (1,331 cases). In contrast, the 

highest numbers of confirmed Covid-19 cases were in Makassar (56,041 cases), Gowa 

(9,560 cases), and Luwu Timur (5,124 cases). 

The values of Moran’s I statistics, expectation and variance for observed data are 

0.056, -0.043, and 0.002, respectively with Z-score = 2.089 and p-value = 0.018. Given a 

Moran’s I value of observed data of 0.056 with p-value=0.018, the null hypothesis stating 

no spatial autocorrelation is rejected. This indicates that the areal pattern for Covid-19 cases 

is statistically significant with a positive spatial autocorrelation. MMI value is 0.042. 

 

4.2. Bayesian Spatial CAR Localised models 

The Bayesian spatial CAR localised models with G=2, G=3, and G=5 with four 

different hyperpriors were used in this study. The DIC, WAIC, MMI for residuals, posterior 

quantities for covariates as well as the number of areas included in each cluster for Bayesian 

spatial CAR localised models with G=2, G=3, and G=5 are provided in Tables 1, 2, and 3, 

respectively. 

Table 1 shows that the Bayesian spatial CAR localised models with G=2 with the 

inclusion of population density have the smallest values of DIC and WAIC (Model M3, M7, 

M11, M15) for all four hyperpriors. The number of areas included in each cluster (G1 and 

G2) for different model combinations differed (M1, M2, M3, and M4) but the clustering 
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structure for different hyperpriors was the same (M1=M5=M9=M13; M2=M6=M10=M14; 

M3=M7=M11=M15; M4=M8=M12=M16). The model with the inclusion of distance to the 

capital province was considered significantly associated with the risk of Covid-19 as the 

95% posterior Credible Interval (CI) does not contain zero (M2, M6, M10, M14) and it 

indicates that the distance to the capital province was negatively significant associated with 

Covid-19 risk. Furthermore, the population density was shown to be positively and 

significantly associated with the risk of Covid-19 (M3, M7, M11, M15). However, the 

inclusion of both covariates causes the relationship between the distance to the capital 

province and Covid-19 risk to change sign (positive). 

 

Table 1. The DIC, WAIC, MMI for residuals, posterior quantities for covariates, and the 

number of areas included in each cluster for G=2. 

G = 2 

Hyperpriors  Models DIC WAIC 
MMI 

residual 

Posterior 

Quantities for 

Covariates 

Number 

of areas 

in the 

cluster 

2.5% 97.5% G1 G2 

IG(1, 0.01) 

M1 
Without 

Covariate 
290.59 300.83 -0.40 - - 11 13 

M2 Distance* 294.88 324.10 -0.29 -1.01 -0.69 17 7 

M3 Density* 286.98 285.82 -0.66 0.16 0.24 10 14 

M4 
Distance*+ 

Density* 
288.03 287.23 -0.45 

0.06 

0.23 

0.20 

0.31 
10 14 

IG(1, 0.1) 

M5 
Without 

Covariate 
289.95 304.85 -0.50 - - 11 13 

M6 Distance* 293.89 313.20 -0.34 -1.08 -0.75 17 7 

M7 Density* 287.02 285.52 -0.35 0.17 0.29 10 14 

M8 
Distance*+ 

Density* 
287.66 287.46 -0.19 

0.10 

0.16 

0.29 

0.25 
10 14 

IG(0.5, 0.0005) 

M9 
Without 

Covariate 
290.83 297.99 -0.21 - - 11 13 

M10 Distance* 294.23 331.19 -0.35 -0.98 -0.68 17 7 

M11 Density* 287.59 286.22 -0.51 0.17 0.27 10 14 

M12 
Distance*+ 

Density* 
287.88 287.50 -0.39 

0.08 

0.26 

0.27 

0.35 
10 14 

IG(0.001, 0.001) 

M13 
Without 

Covariate 
292.02 309.67 -0.62 - - 11 13 

M14 Distance* 295.12 320.20 -0.33 -0.72 -0.46 17 7 

M15 Density* 286.60 284.52 -0.55 0.20 0.29 10 14 

M16 
Distance*+ 

Density* 
287.81 287.87 -0.49 

0.09 

0.21 

0.20 

0.38 
10 14 

 

Table 2 describes the results of the Bayesian spatial CAR localised models with G=3 

with and without the inclusion of covariates. The results showed that the model with the 

inclusion of both covariates with the hyperprior IG (1, 0.01) has the smallest values of DIC 

(M20). However, the model with the inclusion of population density with the hyperprior IG 

(0.5, 0.0005) has the smallest values of WAIC as well as the smallest MMI for residual 

(M27). The number of areas included in each cluster (G1, G2, and G3) for different model 
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combinations are different (M17, M18, M19, M20) but the clustering structure for different 

hyperpriors was the same except for the model with the inclusion of both covariates (M20 

M24 M28 M32). The number of areas for each cluster for Model M20: G1=5, G2=7, 

and G3=12, while for Model M24 are (G1=4, G2=8, G3=12). 

The model which included distance to the capital province found it was negatively 

and significantly associated with the risk of Covid-19, whereas population density was 

positively and significantly associated with the risk of Covid-19. These relationships were 

consistent whether the covariates were alone or in combination. 

 

Table 2. The DIC, WAIC, MMI for residuals, posterior quantities for covariates, and the 

number of areas included in each cluster for G=3. 

Hyperpriors  Models DIC WAIC 
MMI 

residual 

Posterior 

Quantities for 

Covariates 

Number of 

areas in the 

Cluster 

2.5% 97.5% G1 G2 G3 

IG(1, 0.01) 

M17 
Without 

Covariate 
301.62 372.65 -0.20 - - 10 10 4 

M18 Distance* 301.65 357.32 -0.75 -0.62 -0.44 14 7 3 

M19 Density* 293.73 308.23 -0.37 0.17 0.34 10 8 6 

M20 
Distance*+ 

Density* 
226.49 346.50 -0.39 

-0.40 

0.25 

-0.07 

0.34 
5 7 12 

IG(1, 0.1) 

M21 
Without 

Covariate 
299.17 384.52 -0.27 - - 10 10 4 

M22 Distance* 299.64 340.95 -0.66 -0.49 -0.28 14 7 3 

M23 Density* 294.04 308.73 -0.31 0.14 0.32 10 8 6 

M24 

Distance*+ 

Density* 

 

281.58 342.08 -0.49 
-0.24 

0.22 

-0.03 

0.40 
4 8 12 

IG(0.5, 

0.0005) 

M25 
Without 

Covariate 
301.06 379.22 -0.62 - - 10 10 4 

M26 Distance* 300.47 351.59 -0.34 -0.63 -0.34 14 7 3 

M27 Density* 292.21 304.13 -0.22 0.13 0.27 10 8 6 

M28 
Distance*+ 

Density* 
252.01 327.00 -0.63 

-0.29 

0.29 

-0.02 

0.48 
6 6 12 

IG(0.001, 

0.001) 

M29 
Without 

Covariate 
299.40 361.25 -0.45 - - 10 10 4 

M30 Distance* 299.39 339.52 -0.73 -0.68 -0.35 14 7 3 

M31 Density* 292.92 307.93 -0.60 0.23 0.38 10 8 6 

M32 
Distance*+ 

Density* 
297.36 356.32 -0.70 

-0.20 

0.38 

-0.02 

0.49 
5 7 12 

 

Table 3 depicts the results of the Bayesian spatial CAR localised models with G=5 

with and without the inclusion of covariates. While all 4 hyperpriors had the lowest DIC 

when both covariates were included, the lowest WAIC was consistently for the model 

without covariates, but this model often had relatively high MMI residual values, suggestive 

of poor fit. The lowest MMI residuals were consistently for the models including population 

density. While individually the covariates showed the same patterns (negative association 

with Covid-19 risk for distance, positive for population density), when combined often the 
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distance had a 95% CI which included 0. Only M48 with hyperprior of IG(0.001, 0.001) 

retained the original negative association for distance.  

 

Table 3. The DIC, WAIC, MMI for residuals, posterior quantities for covariates, and the 

number of areas included in each cluster for G=5. 

G = 5 

Hyper-

priors 

 

Models DIC WAIC 
MMI 

residual 

Posterior 

Quantities for 

Covariates 

Number of areas in the 

Cluster 

2.5% 97.5% G1 G2 G3 G4 G5 

IG(1, 0.01) 

M33 Without 

Covariate 
285.23 284.49 -0.72 - - 5 5 8 5 1 

M34 Distance* 311.31 401.20 -0.27 -0.82 -0.64 8 6 5 4 1 

M35 Density* 300.88 347.23 -0.23 0.26 0.39 3 7 5 8 1 

M36 Distance*+ 

Density*  
162.17 746.84 -0.67 

-0.12 

0.34 

0.02 

0.47 
1 7 4 8 4 

IG(1, 0.1) 

M37 Without 

Covariate 
284.83 284.07 -0.75 - - 5 5 8 5 1 

M38 Distance* 310.75 391.86 -0.36 -0.67 -0.51 8 6 5 4 1 

M39 Density* 277.69 322.57 -0.35 0.13 0.26 3 7 7 6 1 

M40 Distance+ 

Density*  
276.52 403.51 -0.65 

-0.05 

0.37 

0.10 

0.45 
4 5 3 8 4 

IG(0.5,  

0.0005) 

M41 Without 

Covariate 
285.85 286.35 -0.76 - - 5 5 8 5 1 

M42 Distance* 310.20 389.06 -0.53 -0.85 -0.63 7 7 5 4 1 

M43 Density* 294.10 310.18 -0.49 0.14 0.28 3 7 7 6 1 

M44 Distance+ 

Density*  
244.13 428.58 -0.62 

-0.08 

0.37 

0.06 

0.54 
1 3 8 8 4 

IG(0.001,  

0.001) 

M45 Without 

Covariate 
285.53 285.57 -0.69 - - 5 5 8 5 1 

M46 Distance* 310.29 395.30 -0.19 -0.85 -0.70 5 9 5 4 1 

M47 Density* 298.51 343.62 -0.17 0.23 0.34 3 7 5 8 1 

M48 Distance*+ 

Density*  
-273.5 3018.44 -0.72 

-0.13 

0.36 

-0.02 

0.47 
1 4 7 8 4 

 

The number of areas included in each cluster (G1, G2, G3, G4, and G5) for different 

model combinations of covariates is different (M33, M34, M35, M36) and the clustering 

structure for different hyperpriors was different except for the model without covariates 

(M33 =M37 =M41 =M45). The number of areas for each cluster for Model M33 =M37 

=M41 =M45 are G1=5, G2=5, G3=8, G4=5, and G5=1. The model found distance to the 

capital province was negatively and significantly associated with the risk of Covid-19. 

Furthermore, the model with the inclusion of population density was positively and 

significantly associated with the risk of Covid-19. However, the inclusion of both covariates 

caused the relationship between the distance to the capital province and Covid-19 risk to not 

be significant, except in model M48.  

Overall, based on all the model selection criteria used in this study, the preferred 

model to estimate the relative risk of Covid-19 across South Sulawesi Province is a Bayesian 

spatial CAR localised with hyperprior IG(0.5, 0.0005) model with the inclusion of 

population density (M27) that allows up to three clusters (G=3). There was a positive 
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association between the Covid-19 risk and the population density. The importance of 

population density agrees with other studies (Arbel, Fialkoff, Kerner, & Kerner, 2021; 

Moosa & Khatatbeh, 2021; Sy, White, & Nichols, 2021; Wong & Li, 2020). 

 

Table 4. The localised structure (LS) and RR values for each district are based on the 

preferred model with population density for G=3 (M27) as well as for G=2 (M7), plus the 

same without covariates (M25 and M5). 

ID Districts 
LS for G=2 

RR for M7 
LS for G=3 

RR for M27 
M5 M7 M25 M27 

1 Barru 2 2 0.72 2 2 0.72 

2 Bone 1 1 0.26 1 1 0.26 

3 Bulukumba 1 1 0.36 1 1 0.36 

4 Enrekang 1 1 0.27 1 1 0.27 

5 Gowa 2 2 0.93 2 2 0.93 

6 Jeneponto 1 1 0.45 1 1 0.45 

7 Luwu Timur 2 2 1.29 2 3 1.29 

8 Luwu Utara 2 2 0.79 2 2 0.80 

9 Luwu 1 1 0.31 1 1 0.30 

10 Makassar 2 2 2.94 3 2 2.94 

11 Maros 2 2 0.89 2 3 0.89 

12 Palopo 2 2 1.19 3 3 1.19 

13 Pangkep 2 2 0.76 2 2 0.76 

14 Parepare 2 2 1.40 3 3 1.40 

15 Pinrang 1 1 0.32 1 1 0.32 

16 Selayar 2 2 0.71 2 2 0.71 

17 Sidrap 1 1 0.38 1 1 0.38 

18 Sinjai 2 2 1.09 2 3 1.10 

19 Soppeng 2 2 0.81 2 2 0.81 

20 Takalar 1 2 0.62 2 2 0.62 

21 Toraja Utara 1 1 0.39 1 1 0.39 

22 Toraja 2 2 1.06 3 3 1.06 

23 Wajo 1 1 0.33 1 1 0.32 

24 Bantaeng 1 1 0.50 1 1 0.50 

Despite differences in localised structure, the RR values were similar for both G=2 

and G=3 when population density was included (Table 4). However, the switching of the 

effect of distance to the capital city when included with population density under only G=2 

confirms that even numbers for G are best avoided since switching issues are recognised 

when numbers are even (Lee & Sarran, 2015). The visualisation of the localised clustering 

structure of the preferred model with (M27) and without (M25) population density included 

is presented in Figure 1 and shows slight differences. Districts which changed cluster when 

covariates were included are Luwu Timur, Makassar, Maros, and Sinjai.  

The RR map of confirmed Covid-19 cases based on the Bayesian Spatial CAR 

localised with hyperprior IG(0.5, 0.0005) with G=3 and population density included (M27) 
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is given in Figure 2, and along with Table 4 shows a far higher risk in Makassar city than 

elsewhere. 

 

Figure 1. Localised maps were obtained under the Bayesian spatial CAR localised model 

with G=3 without covariates and with population density as a covariate. 

 

 

Figure 2. Localised maps were obtained under the Bayesian spatial CAR localised model 

with G=3 with population density as a covariate. 

Overall, the number of areas included in each cluster for different model 

combinations of covariates is different and the clustering structure for different hyperpriors 

was also different. Makassar city and Bone have the highest and the lowest RR respectively.  
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5. CONCLUSION 

The inclusion of covariates causes group structure to alter in the localised model. A 

spatial CAR localised model with three clusters and incorporation of population density 

provided the best fit. The interplay between covariates, spatial priors, and clustering structure 

influenced the performance of models for modeling Covid-19 cases. There was a positive 

correlation between the Covid-19 risk and population density. Using appropriate Bayesian 

spatial models enables the identification of different clusters of areas and the impact of 

covariates which may help inform policy decisions for future planning. Makassar city which 

has the highest population density has the highest RR while Bone has the lowest RR for 

Covid-19. Considering other covariates could be possible for future work. 
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