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Abstract. Moran's I is commonly used to detect spatial autocorrelation in spatial data. However, 

Moran's I may lead to underestimating spatial dependence when used for a small number of 

areas. This led to the development of Modified Moran’s I, which is designed to work when there 

are few areas. In this paper, both methods will be presented. Many R programs enable calculating 

Moran's I, but to date, none have been available for calculating Modified Moran's I. This paper 

aims to present both methods and provide the R code for calculating Modified Moran's I, with 

an application to a case study of dengue fever across 14 regions in Makassar, Indonesia. 
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1. Introduction 

Everything with a geographic location inevitably creates a spatial pattern [1]. Spatial analysis is used to 

analyse data related to geographic location. Spatial data can be in the form of discrete or continuous data 

and consists of three types, namely: areal data (also known as lattice data), geostatistical data (also 

known as point-reference), and point patterns [2]. Areal data are based on administrative boundaries 

such as regions, districts, counties, municipalities, postcode sections, and census tracts. Geostatistical 

data are suitable when data are observed at point locations. When focusing on the occurrence of an event 

and location are random, spatial point patterns are suitable. 

 Moran's I statistic proposed by Moran [3] in 1950 is one of the global indexes of spatial 

autocorrelation which is commonly used as a first step to detect spatial dependence in data [4]. Other 

global indexes are the Gamma index of spatial autocorrelation [5], Geary's C [6], Getis and Ord’s G [7], 

and Join Count Statistics [8]. Moran's I measures the strength of spatial autocorrelation with values 

ranging from -1 to 1 [9]. Several modified versions of Moran’s I have been suggested to improve its 

power [10-13]. However, none of these modifications address the case when there are a small number 

of areas. Moran's I may lead to underestimating spatial dependence when used for a small number of 

areas [14, 15]. This led to the development of a modified Moran’s I (MMI) [14] which is designed to 

work when there are few areas.  
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Many R programs enable calculating Moran's I, but to date, none have been available for calculating 

MMI. This paper aims to present a practical example of both Moran’s I and MMI methods, including a 

demonstration of the R code for calculating MMI, and a case study of dengue fever across 14 regions in 

Makassar, Indonesia. 

 

2. Material  

2.1. Moran’s I 

Moran’s I can be used to measure spatial dependence among attribute values of geographic units 

(polygons or points). Without loss of generality, the following assumes areal units for illustration. The 

formula is defined as follows: 

 

𝑰 =
𝒏

∑ ∑ 𝑤𝒊𝒌
𝒏
𝒌=𝟏

𝒏
𝒊=𝟏

∑ ∑ 𝑤𝒊𝒌(𝒚𝒊−�̅�)(𝒚𝒌−�̅�)𝒏
𝒌=𝟏

𝒏
𝒊=𝟏

∑ (𝒚𝒊−�̅�)𝟐𝒏
𝒊=𝟏

,        (1) 

 

where 𝑦𝑖 and 𝑦𝑘 represent the attribute values at areas i and k, n is the number of areas, �̅� is the average 

of the y values over the n areas, and 𝑤𝑖𝑘 is the i-kth element of the spatial weights matrix, W, which 

measures the spatial dependence between areas i and k [9, 16]. 

Moran’s I formula can be written in notation matrix as follows:   

𝐼 =
𝑛

sum(𝐖)

𝒛′𝐖𝒛

𝒛′𝒛
 

where z = 𝒚 − 𝒚. 

If the W matrix is row standardised, ∑ ∑ 𝑤𝑖𝑘
𝑛
𝑘=1

𝑛
𝑖=1 = 𝑛, then Moran’s I simplifies to: 

𝐼 =
𝒛′𝐖𝑟𝒛

𝒛′𝒛
 

 

2.2. Modified Moran’s I (MMI) 

A modified Moran’s I (MMI) that can detect spatial dependence even for very few areas was proposed 

by Carrijo and Da Silva [14] and is given as follows: 

 

𝐼Mod =
∑ (𝒚𝒊−�̅�)(∑ 𝒘𝒊𝒌𝒚𝒌−�̅�)𝒏

𝒌=𝟏
𝒏
𝒊=𝟏

[∑ (𝒚𝒊−�̅�)𝟐𝒏
𝒊=𝟏 ]

𝟏/𝟐
[∑ (∑ 𝒘𝒊𝒌𝒚𝒌−�̅�𝒏

𝒌=𝟏 )
𝟐𝒏

𝒊=𝟏 ]
𝟏/𝟐       (2) 

 

or in matrix notation: 

𝐼Mod =
𝒛′𝒛𝒘

(𝒛′𝒛)𝟏/𝟐(𝒛𝒘′𝒛𝒘)𝟏/𝟐 

where 𝒛 = 𝒚 − 𝒚; 𝒛𝒘 = 𝑾𝑟
𝑇𝒚 − 𝒚; and 𝑾𝑟

𝑇 is the row-standardised spatial weights matrix transposed. 

Based on equations (1) and (2), we can see that the difference between Moran’s I and MMI is that in 

MMI formulae (equation 2), both the numerator and denominator consider neighbouring structure, while 

in Moran’s I only the numerator considers the neighbouring structure. Another difference is that Moran’s 

I is asymptotically normally distributed [17] while MMI is Student’s t distributed [14]. 

 

2.3. Spatial neighbouring matrix 

For areal data, the simplest spatial weights matrix is defined by the binary neighbourhood matrix as 

follows [16]: 

𝑤𝑖𝑘 = {
1     if areas 𝑖 and 𝑘 share a boundary
0     otherwise.                                          

 

 

For point referenced data, other criteria are used to determine whether points are neighbours. The 

resulting matrix is necessarily symmetric, that is 𝑤𝑖𝑘 = 𝑤𝑘𝑖, and the constraint 𝑤𝑖𝑖 = 0 is imposed. 

The concept of a neighbourhood matrix is important in exploring areal data. Different forms of spatial 

neighbourhood matrices include rook contiguity (common border), bishop contiguity (common vertex), 
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and queen contiguity (common border and vertex) [9]. Explanation visual illustration of these spatial 

proximities is given as follows: 

 

 

Figure 1. Rook, Bishop, and Queen Contiguity 

Based on Figure 1, if area A is the area of interest, by using the first-order neighbourhood structure 

and rook contiguity, then the neighbouring areas are Area R1, R2, R3, and R4 (yellow). Using bishop 

contiguity, the neighbouring areas are Area B1, B2, B3, B4 (blue), while under Queen contiguity, all 

blue and yellow areas (R1 to R4 and B1 to B4) are considered neighbours. In this paper, we used the 

Queen contiguity neighbourhood structure, which is widely used. 

3. Practical Example 

3.1. Moran’s I 

To show how Moran’s I and modified Moran’s I perform for a small number of areas, an example of a 

(3 × 3) regular system with n = 9 observations is given as follows:  

 

155 
#7 

255 
#8 

155 
#9 

255 
#4 

405 
#5 

255 
#6 

155 
#1 

255 
#2 

155 
#3 

Figure 2. An example of random positive data using a regular system with n = 9 

 
Figure 2 shows an example of random positive data, y. The values in the lower-left corner depict the 

unique identifier for the enumeration spatial unit, and values in the centre depict the attribute values. By 

using the binary neighbourhood structure and Queen contiguity, the non-standardised spatial weights 

matrix is given as follows: 

 

Area 

B4

Area 

R3

Area 

B3

Area 

R4
Area A

Area 

R2

Area 

B1

Area 

R1

Area 

B2
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𝐖 =

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9 [

 
 
 
 
 
 
 
 
0 1 0

1 0 1

0 1 0

1 1 0

1 1 1

0 1 1

0 0 0

0 0 0

0 0 0
1 1 0

1 1 1

0 1 1

0 1 0

1 0 1

0 1 0

1 1 0

1 1 1

0 1 1
0 0 0

0 0 0

0 0 0

1 1 0

1 1 1

0 1 1

0 1 0

1 0 1

0 1 0]
 
 
 
 
 
 
 
 

. 

 

The row-standardised spatial weights matrix is given as follows: 

 

𝐖𝑟 =

[
 
 
 
 
 
 
 
 
 

0 1/3 0
1/5 0 1/5
0 1/3 0

1/3 1/3 0
1/5 1/5 1/5
0 1/3 1/3

0      0     0
0      0     0
0      0     0

1/5 1/5 0
1/8 1/8 1/8
0 1/5 1/5

0 1/5 0
1/8 0 1/8
0 1/5 0

1/5 1/5 0
1/8 1/8 1/8
0 1/5 1/5

0      0     0
0      0     0
0      0     0

1/3 1/3 0
1/5 1/5 1/5
0 1/3 1/3

0 1/3 0
1/5 0 1/5
0 1/3 0 ]

 
 
 
 
 
 
 
 
 

 

 

where 𝑤𝑟,𝑖𝑘 =
𝑤𝑖𝑘

∑ 𝑤𝑖𝑘𝑘
 and the elements of each row sum to one, and 

𝒛 = [𝒚 − 𝑦] =

[
 
 
 
 
 
 
 
 
155 − 227.22
255 − 227.22
155 − 227.22
255 − 227.22
405 − 227.22
255 − 227.22
155 − 227.22
255 − 227.22
155 − 227.22]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
−72.22
27.778
−72.22
27.778
177.78
27.778
−72.22
27.778
−72.22]

 
 
 
 
 
 
 
 

 

Moran’s I can be calculated as follows: 

𝐼 =
[𝒚 − 𝑦]′𝐖𝑟[𝒚 − 𝑦]

[𝒚 − 𝑦]′[𝒚 − 𝑦]
=

−24444.44

55555.56
= −0.44 

 

The R library ape can be used to calculate Moran’s I as follows (note that this package uses row-

standardised spatial weights): 

 

Code 1. R code for calculating Moran’s I using the ape library 

#Load required package 
library(ape)  
 
# Define the dummy data 
y <- c(155, 255, 155, 255, 405, 255, 155, 255, 155) 
 
# Define the spatial weights matrix 
W <- matrix(c( 
       0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 
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       0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 
       1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 
       0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1,  
       0, 0, 0, 0, 1, 1, 0, 1, 0), 9, 9)  
W 
# Calculte Moran’s I 
I <- ape::Moran.I(y, W) 
I 

 

In practice, the spatial weights matrix is generally constructed from available spatial information, say 

from a shapefile. This can be achieved in R using the libraries rgdal and spdep. 

 

The result of Moran’s I as follows: 
> I 
$observed 
[1] -0.44 
 
$expected 
[1] -0.125 

 
$sd 
[1] 0.1337339 
 
$p.value 
[1] 0.01850157 

 
Alternatively, Moran’s’ I can be calculated without using the ape library based on the matrix 

formulation as follows: 

 

Code 2. R code for calculating Moran’s I without using the ape library 

 
# Calculate Moran’s I first-hand 
# First compute the row-standardised weights matrix 
Wr <- W/(rowSums(W)) 
 
Z <- y - mean(y) 
a <- t(Z) %*% Wr %*% Z 
b <- t(Z) %*% Z 
I.2 <- a/b 
I.2 

 

 
The result is as follows: 
> I.2 
      [,1] 
[1,] -0.44 
 
3.2. Modified Moran’s I (𝐼𝑀𝑜𝑑) 

 

By using the binary neighbourhood structure and queen contiguity, a column-standardised weight 

matrix (𝑾𝒄) and 𝒛𝒘 are given as follows: 
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 𝒛𝒘 = 𝑾𝑟
𝑇𝒚 − 𝑦= 

[
 
 
 
 
 
 
 
 
 

0 1/5 0
1/3 0 1/3
0 1/5 0

1/5 1/8 0
1/5 1/8 1/5
0 1/8 1/5

0      0     0
0      0     0
0      0     0

1/3 1/5 0
1/3 1/5 1/3
0 1/5 1/3

0 1/8 0
1/5 0 1/5
0 1/8 0

1/3 1/5 0
1/3 1/5 1/3
0 1/5 1/3

0      0     0
0      0     0
0      0     0

1/5 1/8 0
1/5 1/8 1/5
0 1/8 1/5

0 1/5 0
1/3 0 1/3
0 1/5 0 ]

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
155
255
155
255
405
255
155
255
155]

 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
 
227.22
227.22
227.22
227.22
227.22
227.22
227.22
227.22
227.22]

 
 
 
 
 
 
 
 

 

 

                           =

[
 
 
 
 
 
 
 
 
−74.59722

28.73611

−74.59722
28.73611

183.44444

28.73611
−74.59722

28.73611

−74.59722]
 
 
 
 
 
 
 
 

 

 
MMI is therefore: 

 

𝐼Mod =
𝒛′𝒛𝒘

(𝒛′𝒛)1/2(𝒛𝒘′𝒛𝒘)1/2
=

57355.56

(235.70)(243.34)
= 0.9999998 

 
The following code calculates the MMI in R. 

 

Code 3. R code for calculating MMI 

# Compute modified Moran's I 
Z<-(y-mean(y)) 
Zw <- t(Wr) %*% y - mean(y) 
a <- t(Z) %*% Zw 
b <- sqrt(t(Z) %*% Z) 
c <- sqrt(t(Zw) %*% Zw) 
I.mod <- (a/(b*c)) 
I.mod 

 

Result is as follows: 

 
> I.mod 
          [,1] 
[1,] 0.9999998 
 

 
Using the specified weights matrix above, the value of Moran’s I is negative (-0.44) while 

modified Moran’s I (MMI) is positive (≈1). The latter statistic provides a much better indication of the 

spatial autocorrelation of this data, whereas Moran’s I indicates that the spatial autocorrelation is 

negative and not very strong in magnitude – an apparent contradiction to that which is readily observable 

[14].  
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3.3. Application on Dengue Fever dataset 

The values of Moran’s I and MMI using a dengue fever dataset in Makassar from 2002 and 2017 are 

provided below. 

 

Table 1. The results of Moran’s I and MMI for Makassar dengue fever data  

Year Moran’s I Modified Moran's I 

2002 -0.3 -0.4 

2003 -0.3 -0.4 

2004 -0.2 -0.3 

2005 -0.2 -0.3 

2006 -0.2 -0.3 

2007 -0.2 -0.3 

2008 -0.2 -0.3 

2009 -0.19 -0.24 

2010 -0.2 -0.4 

2011 -0.2 -0.2 

2012 -0.1 -0.2 

2013 -0.1 0.2 

2014 -0.19 -0.25 

2015 -0.1 -0.2 

2016 0.14 0.19 

2017 0.01 0.10 

 

Table 1 shows that Moran’s I is always smaller in magnitude than the MMI for each year. The largest 

difference between these two statistics is observed in 2013, where the value of Moran’s I result is 

negative (-0.1) while the MMI value is positive (0.2). However, neither of these statistics suggests there 

is substantive spatial autocorrelation present in any year. 

 

4. Conclusion 
 

Moran’s I can be misleading when there are a small number of areas. This can potentially affect the 

magnitude of the spatial autocorrelation and even the sign (negative/positive). This can indicate weak 

negative autocorrelation when the data has substantive positive clustering, for example. MMI is a 

valuable approach to obtain a more accurate measure of spatial autocorrelation when there are a small 

number of areas. The availability of the R code for calculating MMI is beneficial for researchers, 

especially for spatial modellers, and we hope this encourages greater usage of MMI. 
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