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a b s t r a c t 

A range of Bayesian models have been used to describe spatial and temporal patterns of disease in areal 

unit data. In this study, we applied two Bayesian spatio-temporal conditional autoregressive (ST CAR) 

models, one of which allows discontinuities in risk between neighbouring areas (creating ‘groups’), to 

examine dengue fever patterns. Data on annual (2002–2017) and monthly (January 2013 - December 

2017) dengue cases and climatic factors over 14 geographic areas were obtained for Makassar, Indonesia. 

Combinations of covariates and model formulations were compared considering credible intervals, overall 

goodness of fit, and the grouping structure. For annual data, an ST CAR localised model incorporating av- 

erage humidity provided the best fit, while for monthly data, a single-group ST CAR autoregressive model 

incorporating rainfall and average humidity was preferred. Using appropriate Bayesian spatio-temporal 

models enables identification of different groups of areas and the impact of climatic covariates which 

may help inform policy decisions. 

Crown Copyright © 2020 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Dengue fever (DF) affects more than one hundred million peo- 

ple every year and is one of the most important mosquito-borne 

diseases in the world ( Vanessa et al., 2012 ). DF is the main source 

of human deaths from vector borne disease ( Gubler, 1998 ). The 

dengue viruses are transmitted by the female mosquito Aedes ae- 

gypti , whose breeding and development are influenced by climatic 

factors such as rainfall, humidity, and temperature ( Yu et al., 2016 ). 

Incubation within mosquitoes ranges from 8 to 12 days, and within 

humans from 3 to 14 days before symptoms appear ( Chan and 

Johansson, 2012 ). 

When examining small areas within a country, Bayesian disease 

mapping approaches are often useful. Bayesian spatio-temporal 

(ST) models enable the time-varying nature of climatic variables 

and dengue fever to be captured over small areas. Often the spatial 

random effects in these models assume a conditional autoregres- 

sive (CAR) prior. This prior can be formulated in a number of ways. 
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E-mail address: k.mengersen@qut.edu.au (K. Mengersen). 

Two popular priors are the Besag et al. (1991 ), and the Leroux et al. 

(20 0 0 ), described in more detail below. Both these models allow 

for a combination of smoothing over nearby areas as well as to- 

wards the overall average. The BYM and Leroux models have been 

criticised by some authors for the potential to oversmooth the risks 

when there are genuine differences between neighbouring areas 

( Lee and Mitchell, 2013 ; Rodrigues and Assunção, 2012 ). Hence, it 

would be beneficial to have a model that allows for spatial auto- 

correlation between adjacent areas within discontinuous groups. 

Recently, several forms of Bayesian ST models have been 

introduced which allow for such discontinuities. Lee and Law- 

son (2016) introduced a Bayesian ST CAR localised model which 

separates areas into different groups, and only smooths over 

adjacent areas if they are within the same group. They compared 

three Bayesian ST models: ST CAR localised model ( Lee and 

Lawson, 2016 ), ST CAR ANOVA model ( Knorr-Held, 1999 ), and ST 

CAR autoregressive (AR) model ( Rushworth et al., 2014 ), for de- 

scribing maternal smoking rates with and without socio-economic 

covariates. The authors found that the ST CAR localised model 

outperformed those which did not allow for discontinuities (ST 

CAR ANOVA and ST CAR AR) in terms of WAIC. However, to our 

knowledge, this class of models has not been used in examining 

dengue fever and climatic influences. 
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This paper aims to determine the most appropriate Bayesian 

model and corresponding spatial priors for data collected at differ- 

ent temporal resolutions (monthly and annually) in order to detect 

spatio-temporal patterns of dengue fever. The impact of covariates 

on the groups identified in an ST CAR localised model is also eval- 

uated, in order to assess the importance of climatic variables on 

dengue transmission across Makassar. The structure of the ST CAR 

localised model is the same as an ST CAR AR, but there is an addi- 

tional grouping component in the localised model which separates 

areas into groups and random effects are modelled with an in- 

trinsic CAR (ICAR) prior, described below. We also compare the ST 

CAR AR and ST CAR localised models when there is only one group 

identified. 

2. Methods and materials 

2.1. Study area 

Dengue fever mostly affects sub-tropical and tropical areas. It is 

endemic to Indonesia which had the highest number of cases in 

the Southeast Asia region in 2010 ( Chan, 2012 ). The average num- 

ber of cases during 20 0 0 to 2011 was 94,647 cases, with deaths 

per year ranging from 472 to 1446 ( WHO-SEARO, 2011 ). Makassar, 

the capital city of South Sulawesi Province, is the fifth largest city 

in Indonesia according to population, with a population in 2017 

of approximately 1.5 million (737,146 males and 751,865 females). 

The city’s area is 175.79 km 

2 , and it has 14 administrative districts 

with populations ranging from 28,696 to 208,436 in 2017. The pop- 

ulation density of Makassar city was 8471 people per kilometre 

square in 2017, and the average number of residents per house- 

hold was about four people ( BPS, 2018 ). Makassar district is the 

city centre of Makassar. Mariso, Mamajang, and Makassar districts 

are urban areas; Biringkanaya, Tamalanrea, and Manggala districts 

are rural areas, and the remaining districts are suburban areas (see 

Fig. 1 ). Tamalanrea and Makassar district had the lowest and the 

highest population densities, respectively. Tamalate, Rappocini, and 

Makassar districts have a number of areas that are categorised as 

slums. Biringkanaya is the largest district in Makassar city but only 

one subdistrict is categorised as a slum area. 

2.2. Dengue data 

The number of dengue cases was obtained from the Makas- 

sar city Health Office, South Sulawesi Province, Indonesia covering 

annual time periods from 2002 to 2017 by district. The monthly 

dengue fever incidence from January 2013 to December 2017 was 

also obtained by district and sex. An ethics exemption (exemption 

number: 170 0 0 0 0479) was obtained from Queensland University 

of Technology (QUT) as the count data were non-identifiable. 

2.3. Climatic variables 

Indonesia has two seasons, the rainy season from November to 

April and the dry season from May to October. The temperature 

is relatively constant throughout the year, ranging from 23 to 34 

°Celsius. Climatic variables were gathered from the Meteorology, 

Climatology, and Geophysical Agency from January 2002 to De- 

cember 2017 (htttp://dataonline.bmkg.go.id/home). These variables 

were daily minimum temperature, maximum temperature, mean 

temperature, mean humidity, and the amount of rainfall. Due to 

collinearity issues, only one of the temperature variables was in- 

cluded in any combination of covariates used in modelling. 

Makassar has four rainfall stations: BBMKG region IV Panaikang 

station in Panakkukang (rainfall station 1); Biring Romang sta- 

tion in Manggala (rainfall station 2); BPP Barombong station in 

Tamalate (rainfall station 3); and Maritime meteorology station 

Paotere in Ujung Tanah (rainfall station 4). The rainfall for each 

district is taken from the nearest rainfall station. This was defined 

based on distance to district centroids using the R package fields, 

function rdist in R version 3.3.3 ( R Core Team, 2019 ); see Fig. 1 . The 

amount of monthly precipitation fluctuates, ranging from 0 mm 

to 1054.2 mm. There are some missing monthly precipitation val- 

ues in the dataset (17/768 = 2.2%). These missing values were es- 

timated by taking the average of non-missing neighbouring time 

series values in time for the corresponding rainfall station. 

As the climatic variables scales differs significantly, all climatic 

covariates are standardised to have zero mean and standard devia- 

tion of unity for numerical stability, to equalise the data variability 

and range. 

2.4. Model formulation 

Two ST CAR models were used to assess the presence of 

groups and importance of climatic variables on dengue transmis- 

sion across Makassar. 

2.4.1. Spatio temporal CAR localised model 

This model proposed by Lee and Lawson (2016) is capable of 

identifying groups of areas that display different values of the 

response compared with their geographical and temporal neigh- 

bours. It is therefore not restricted by the assumption that two 

areas that are close together should have similar responses (after 

accounting for specified covariates). The model assumes a Poisson 

distribution for the response and is formulated as follows, 

y i j ∼ Poisson 
(
e i j θi j 

)

log 
(
θij 

)
= x T ij α + u ij + λZ ij , 

where y ij is the observed number of dengue cases in the i th area 

and j th time period, i = 1, . . ., I ; j = 1, …, J ; and e ij and θ ij 

are the expected number of dengue cases and the relative risk of 

dengue respectively, each in area i at time j . The expected num- 

ber of dengue cases ( e ij ) was calculated as the overall incidence 

rate for the entire Makassar region over the entire time period 

multiplied by the population at risk in each area and time period, 

e i j = 

∑ 

i 

∑ 

j y i j ∑ 

i 

∑ 

j po p i j 
po p i j . The dengue raw standardised incidence ratio 

(SIR) (i.e. the relative risk) was calculated as the ratio of the ob- 

served number of dengue cases to the expected number of cases. 

In the above model, x T 
i j 
α represent a linear combination of 

the selected covariates (fixed effects), and the two sets of la- 

tent components, u ij and λZ ij 
are smoothing components, a spa- 

tially and temporally autocorrelated variation and a piecewise con- 

stant grouping or intercept component, respectively. Spatially and 

temporally adjacent data points ( y ij , y kl ) will be autocorrelated if 

λZ ij 
= λZ kl 

(the same intercept), but display very different values if 

λZ ij 
� = λZ kl 

. In the context of dengue fever incidence, λZ ij 
� = λZ kl 

allows 

spatially and temporally neighbouring areas to have very differ- 

ent probabilities of dengue fever. This piecewise intercept compo- 

nent λZ ij 
can therefore identify distinct groups of areas with high 

or low probabilities of dengue disease. This encompasses at most 

G ( λ1 < λ2 < λ3 < ��� < λG ) distinct groups which are ordered 

through the prior: 

λk ∼ Uniform ( λk −1 , λk+1 ) for k = 1 , 2 , . . . , G 

where λ0 = - ∞ and λG + 1 = + ∞ . An observation in area i at time 

j is allocated to one of the G intercepts by Z ij ∈ { 1 , 2 , 3 , . . . , G } . 
The value of G is fixed in the model and it is recommended to set 

it to a small odd number ( Lee and Sarran, 2015 ). In the case study 

below, values of G = 2 and G = 3 are considered. Larger values are 

not considered because of the small number of areas. The value of 
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Fig. 1. Indonesia map (a) and Makassar map showing the 14 districts and the location and coverage of the four rainfall stations (b). 

Z ij is penalised towards the middle intercept value G 

∗: G 

∗ = 

G +1 
2 

if G is odd and G 

∗ = 

G 
2 if G is even through a penalty function 

f ( Z ij ): 

f 
(
Z ij 

∣∣Z i, j−1 

)
= 

exp 

(
−δ

[ (
Z ij − Z i, j−1 

)2 + 

(
Z ij − G 

∗)2 ] )

∑ G 
r=1 exp 

(
−δ

[ (
r − Z i, j−1 

)2 + ( r − G 

∗) 2 
] )

for j = 2 , . . . , J, 

f ( Z i 1 ) = 

exp 
(
−δ( Z i 1 − G 

∗) 2 
)

∑ G 
r=1 exp 

(
−δ( r − G 

∗) 2 
)

where δ is the penalty parameter, δ ~ Uniform (L δ , U δ). In the 

case study below, the hyperparameters L δ and U δ are set to 1 and 

100, respectively, in keeping with published advice ( Lee and Law- 

son, 2016 ). 

The smoothing components u ij are modelled via the multi- 

variate autoregressive process with spatial autocorrelation ρS = 1 

which corresponds to an ICAR model. 

u 1 ∼ N 

(
0 , τ 2 Q ( W , ρS ) 

−1 
)
, 

(
u j 

∣∣u j−1 , 
)

∼ N 

(
ρT u j−1 , τ

2 Q ( W , ρS ) 
−1 

)
j = 2 , . . . J, 

τ 2 ∼ Inverse − Gamma ( 1 , 0 . 01 ) 
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ρT ∼ Uniform ( 0 , 1 ) 

These values were set for the case study in keeping with pub- 

lished advice ( Lee and Lawson, 2016 ). A value of ρS = 1 imposes 

strong spatial smoothing on u j , so that any different values (step 

changes) in the surface are controlled instead by λZ ij 
. 

2.4.2. Spatio temporal CAR AR model 

The second model we use is the ST CAR AR model described by 

Rushworth et al. (2014) . This model structure has some similarities 

to the ST localised model, but the linear predictor has no group 

component λ and random effects u ij are modelled with varying ρS , 

allowing for additional unstructured as well as spatially structured 

smoothing. The model is given by: 

y i j ∼ Poisson 
(
e i j θi j 

)

log( θi j ) = x T i j α + u i j , 

where these terms are defined as before, except here u ij differs 

slightly, i.e. 

u 1 ∼ N 

(
0 , τ 2 Q ( W , ρS ) 

−1 
)
, 

(
u j 

∣∣u j−1 

)
∼ N 

(
ρT u j−1 , τ

2 Q ( W , ρS ) 
−1 

)
j = 2 , . . . , J, 

In this model, the spatial surface at time j , u j = ( u 1 j , . . . , u I j ) , 

is the vector of random effects for time period j , which evolves 

over time through a first order autoregressive AR(1) process with 

temporal autoregressive parameter ρT . 

The precision matrix Q ( W , ρS ) = ρS [ diag ( W 1 ) − W ] + 

( 1 − ρS ) I ) corresponds to the CAR Leroux prior ( Leroux et al., 

20 0 0 ) where I and 1 are the I × I identity matrix and the I × 1 

vector of ones respectively. Weakly informative inverse-gamma 

priors are used for the variance, while Uniform and Gaussian 

priors are used for the dependence and regression parameters 

respectively: 

τ 2 ∼ Inverse − Gamma ( 1 , 0 . 01 ) 

ρS , ρT ∼ Uniform ( 0 , 1 ) , 

α ∼ N ( 0 , 10 0 0 I ) . 

We used a set of model combinations to investigate the most 

appropriate spatial priors and the impact of covariates on the 

group identified at different temporal resolutions. We compared 

different versions of the ST CAR localised model allowing a max- 

imum of two ( G = 2) and three ( G = 3) groups, without climatic 

covariates and then with different combinations of climatic covari- 

ates. We considered each of the main climatic variables separately 

(average humidity, average temperature, and rainfall), then exam- 

ined combinations of two then three, together (average humidity, 

rainfall and one of the temperature variables). In total, we had 9 

different combinations of models run for both G = 2 and G = 3. 

Parameters of models were estimated using the CARBayesST 

package version 2.5.1 in R version 3.3.3 ( R Core Team, 2019 ). Poste- 

rior quantities for parameters were based on 10 0,0 0 0 MCMC sam- 

ples collected after a burn-in of 20,0 0 0 samples. 

Different combinations of covariates and spatio-temporal model 

formulations are compared with respect to three metrics: whether 

the 95% posterior credible interval (CI) for the climatic covariate 

coefficient contains zero, the overall goodness of fit (Watanabe- 

Akaike Inf ormation Criterion, WAIC) ( Wat anabe, 2010 ) and the pro- 

portion of areas included in the groups. Smaller values of WAIC 

indicate a better fit. 

3. Results 

3.1. Annual dengue cases 2002–2017 

A descriptive analysis of the number of Makassar dengue cases 

from 2002 to 2017 are presented in Supplementary Table S1 and 

Fig. 2 . Spearman correlations between dengue cases and climatic 

covariates are given in Table 1 . It is clearly seen that there was 

a negative correlation between rainfall and dengue, and between 

average temperature and dengue, whereas average humidity was 

positively correlated. Maximum temperature and minimum tem- 

perature were not significantly correlated with annual dengue 

cases. 

The districts included in each group under the ST CAR localised 

model with G = 2 and G = 3 without covariates are given in 

supplementary Table S2. Both models support two groups. In- 

terestingly, under the ST CAR localised model with G = 3, only 

one group was identified from 2008 to 2017. Table 2 displays the 

WAIC, and number of data points for each group with and without 

climatic covariates under the ST CAR localised model with G = 2 

and G = 3. 

Overall, the best model based on annual dengue data was 

an ST CAR localised model with three groups and incorpora- 

tion of average humidity as it fulfilled all three metrics: the 

95% posterior credible interval (CI) for the humidity coefficient 

does not contain zero; it has smaller WAIC ( Watanabe, 2010 ), 

and there is at least one observation in each group. Under this 

model, there was one data point assigned to the first group, 

and 171 and 52 data points assigned to the second and the 

third groups, respectively. The posterior distribution for the coef- 

ficient of average humidity had a median of 0.17 (95% CI: 0.03, 

0.26). 

A visualisation of the grouping structures with and without co- 

variates from 2002 to 2017 is presented in Fig. 3 . This figure shows 

how the group structures changed with the inclusion of covariates 

for all areas and over the time period. 

From Fig. 3 , it can be clearly seen that the CAR ST localised 

model with G = 3 and incorporation of average humidity can 

fit the data better than a corresponding model without covari- 

ates. Fig. 3 (a) for the model without covariates depicts two groups 

whereas Fig. 3 (b) for the model with average humidity as a covari- 

ate depicts three groups, with one group (Group 1) containing one 

district in one year (2014). An appealing feature of this CAR ST lo- 

calised model with incorporation of average humidity is the abil- 

ity to identify outliers as discussed below. For instance, in 2009, 

the ST CAR localised model without covariates consists of only one 

group while the ST CAR localised model with covariates consists of 

two groups, with one district (Rappocini) separated from the other 

districts. The number of dengue cases in the Rappocini district (68 

cases) is substantially higher than other districts (ranging from 3 to 

38 cases). Another example is evident in 2014, with the ST CAR lo- 

calised model without covariates supporting only one group, while 

the ST CAR localised model with covariates comprises two groups 

(Ujung Tanah district with no cases) separated from the other dis- 

tricts (dengue counts ranging from 2 to 41). Details of the preferred 

ST CAR localised models with and without covariates as well as the 

fitted values are presented in supplementary Table S3. 

3.2. Monthly dengue cases 2013–2017 

Spearman correlations between dengue cases and monthly cli- 

matic covariates are given in Table 3 . It is clearly seen the aver- 

age humidity was positively correlated with monthly dengue cases, 

whereas rainfall, average temperature, maximum temperature, and 

minimum temperature were not significant at the 5% level. 
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Fig. 2. Number of dengue cases across 14 districts of Makassar, Indonesia, 2002–2017. 

Table 1 

Correlation between dengue and climatic covariates for annual data 2002–2017. 

Dengue Rainfall Av.Temp Max.Temp Min.Temp Av.hum 

Rainfall −0.225 

(0.001) 

Av.Temp −0.322 

(0.000) 

0.184 

(0.006) 

Max.Temp −0.116 

(0.084) 

−0.237 

(0.000) 

0.642 

(0.000) 

Min.Temp 0.033 

(0.622) 

0.239 

(0.000) 

0.704 

(0.000) 

0.382 

(0.000) 

Av.hum 0.189 

(0.004) 

0.293 

(0.000) 

−0.331 

(0.000) 

−0.695 

(0.000) 

−0.078 

(0.245) 

Cell Contents: Spearman rho. 

( p -value) 

Table 2 

Bayesian ST CAR Localised for G = 2 an G = 3 with and without climatic covariates for annual dengue cases 

2002–2017. 

ST CAR Localised with G = 2 ST CAR Localised with G = 3 

Models WAIC G1 G2 Models WAIC G1 G2 G3 

1 Without Covariates 2045.3 134 90 Without Covariates 1915.2 0 165 59 

2 R ∗+ AT ∗+ AH 3613.3 223 1 R ∗+ AT ∗+ AH ∗ 1979.8 1 180 43 

3 R ∗+ AH ∗ 1809.7 224 0 R + AH ∗ 1758.4 0 166 58 

4 R 2081.7 139 85 R 1880.2 0 165 59 

5 AH ∗ 1828.3 149 75 AH ∗ 1837.8 1 171 52 

6 AT 2251.0 139 85 AT ∗ 1862.0 1 179 44 

7 R + AT ∗ 2431.4 140 84 R ∗ + AT ∗ 1878.4 0 182 42 

8 R + MinT 2412.2 138 86 R + MinT ∗ 2178.1 1 184 39 

9 R + MaxT ∗ 2069.6 136 88 R + MaxT ∗ 1731.0 1 182 41 

The values in columns denoted G1, G2, G3 are the number of observations in groups one, two, and three, 

respectively. 

R, AT, AH, MinT, MaxT are rainfall, average temperature, average humidity, minimum temperature and maxi- 

mum temperature, respectively. 
∗ 95% posterior credible interval (CI) for the coefficient does not contain zero. 

An ST CAR localised model with G = 2 and G = 3 for monthly 

dengue cases in 2013–2017 with climatic covariates at a temporal 

lag of 0 or 1 month were also analysed (see supplementary Tables 

S4 and S5 respectively). The results showed that all model com- 

binations consist of one group only. Average humidity is the only 

climatic covariate that is substantive for a lag of 0 months, while 

no climatic covariates were substantive for a lag of 1 month. 

As the ST CAR localised model with G = 2 and G = 3 for 

monthly dengue cases and all combinations of models with and 

without climatic covariates (lag 0 and lag 1) consist of one group 

only, the ST CAR AR was used to analyse these monthly dengue 

data. Table 4 shows the WAIC under the ST CAR AR model with 

and without climatic covariates. The posterior median estimate for 

rainfall was −0.2676 (95% CI: −0.4698, −0.0580) and for average 

humidity was 0.42 (95% CI: 0.17, 0.65). 

Under the ST CAR AR model (see Table 4 ), rainfall and aver- 

age humidity were the climatic covariates that were substantively 

associated with the number of dengue cases and this model had 
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Fig. 3. Localised maps obtained under the spatio-temporal CAR localised model for annual data, with G = 3 without covariates (a) and with average humidity as a 

covariate (b). 

Table 3 

Correlation between dengue and climatic covariates for monthly data January 2013 - December 2017. 

Dengue Rainfall Av.Temp Max.Temp Min.Temp Av.Hum 

Rainfall 0.035 

(0.308) 

Av.Temp −0.008 

(0.821) 

−0.408 

(0.000) 

Max.Temp −0.022 

(0.518) 

−0.647 

(0.000) 

0.887 

(0.000) 

Min.Temp 0.045 

(0.189) 

0.144 

(0.000) 

0.649 

(0.000) 

0.464 

(0.000) 

Av.hum 0.125 

(0.000) 

0.889 

(0.000) 

−0.480 

(0.000) 

−0.693 

(0.000) 

0.127 

(0.000) 

Cell Contents: Spearman rho. 

( p -value). 

the smallest WAIC value. In conclusion, for monthly data, from all 

model combinations (ST CAR localised model G = 2 and G = 3 

without covariates and with covariates (lag 0 and lag 1), and ST 

CAR AR model), an ST CAR AR with the incorporation of rainfall 

and average humidity was preferred. 

4. Discussion 

A number of previous studies have explored the relationships 

between climatic covariates and dengue fever ( Arcari et al., 2007 ; 

Cheong et al., 2013 ; Johansson et al., 2009 ; Karim et al., 2012 ). For 

instance, Sani et al. (2015) used a Bayesian spatial-temporal model 

and found that both rainfall and population density increased the 

risk of dengue in Kendari, Southeast Sulawesi, Indonesia. Most pre- 

vious studies have used an intrinsic CAR prior structure for spatial 

and temporal variation to model dengue fever ( Aswi et al., 2019 ), 

although more recent papers have also explored the use of the Ler- 

oux prior ( Martínez-Bello et al., 2017 , 2018 ). The Leroux CAR prior 

model has also been compared with BYM CAR model in modelling 

dengue fever ( Martínez-Bello et al., 2017 ). However, none these 

models allowed for discontinuities in risk between neighbouring 

areas. The relatively recent ST CAR localised model allows for spa- 

Table 4 

Bayesian ST CAR AR model with and without climatic covariates for monthly 

dengue cases 2013–2017. 

Models WAIC rho.S rho.T 

1 Without covariates 2037.75 0.55 0.59 

2 Rainfall ∗+ average temperature + average humidity ∗ 2010.17 0.35 0.54 

3 Rainfall ∗+ average humidity ∗ 2013.13 0.35 0.54 

4 Rainfall 2028.54 0.55 0.59 

5 Average humidity ∗ 2061.28 0.47 0.56 

6 Average temperature 2079.45 0.52 0.57 

7 Rainfall + average temperature 2019.18 0.55 0.59 

8 Rainfall + minimum temperature 2020.13 0.57 0.59 

9 Rainfall + maximum temperature 2031.78 0.55 0.59 

rho.S and rho.T measure spatial and temporal autocorrelation, respectively. 
∗ 95% posterior credible interval (CI) for the coefficient does not contain zero. 

tial autocorrelation between adjacent areas within discontinuous 

groups ( Lee and Lawson, 2016 ). These models are appealing since 

disease risks in complex urban areas tend to reveal more localised 

spatial structure, both for areas where they vary smoothly over 

space and areas where there are large changes (discontinuities) in 

the values ( Lee and Mitchell, 2012 ). 
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However, such complexity may not be warranted in all cases 

and it might be preferable to describe the data as a single group 

with more simple spatial and/or temporal patterns. To our knowl- 

edge, this study is the first to examine the interplay between 

groups, climatic covariates and priors in Bayesian spatio-temporal 

models of dengue fever incidence. We provide the first report of a 

Bayesian ST CAR localised model as well as a Bayesian ST CAR AR 

model for modelling the risk of dengue fever in Makassar, Indone- 

sia. 

Our results showed that for annual data, an ST CAR localised 

model with G = 3 with incorporation of average humidity provided 

the most suitable model based on a combination of the three met- 

rics. Interestingly, the ST CAR localised model with G = 3 with- 

out covariates from 2002 to 2007 revealed two groups, while from 

2008 to 2017 only one group was identified (see Fig. 3 and Supple- 

mentary Table S2). The number of groups seemed to be influenced 

by the counts of dengue cases and the variation in these counts 

between districts. The number of dengue cases and the variance 

from 2002 to 2007 were much higher (ranging from 457 to 1467 

and from 550.09 to 10,622.80 respectively) than the number of 

dengue cases and the variance from 2008 to 2017 (ranging from 

85 to 265 and from 24.44 to 286.06) (see Supplementary Table S1 

and Fig. 2 ). The preferred model (ST CAR localised with G = 3 with 

average humidity) can detect the grouping structure better than 

an equivalent model without covariates. For example, the group- 

ing structure changed from one group to two groups in 2009 and 

2014. In 2009, Rappocini was the only district in a separate group 

whereas in 2014, Ujung Tanah was the only district in a separate 

group (see Supplementary Table S3). The ability to identify outliers 

in this manner is an appealing feature of the localised model. Over- 

all, the incorporation of average humidity as a covariate influenced 

the number of local groups for annual data. 

For monthly data, all model combinations using an ST CAR lo- 

calised model with G = 2 and G = 3 with and without covariates 

consisted of one group only. At this finer temporal resolution, the 

numbers of cases are quite similar (ranging from 0 to 39 cases) 

across areas and time periods. An alternative ST CAR AR model 

was therefore also considered for the monthly dengue dataset. This 

model with incorporation of rainfall and average humidity pro- 

vided the best fit based on the three metrics considered. 

Overall, the ST CAR localised model seems to be a better choice 

when there is a relatively large contrast in the magnitude and vari- 

ation in counts over districts and time periods, as seen in the an- 

nual data. In this case, data more readily separate into different 

groups. However, when the count data and variance are quite sim- 

ilar over spatial areas and time periods, the localised model is less 

well supported as the data tend to be classified into only a single 

group, so choosing a simpler model that also incorporates unstruc- 

tured smoothing (such as the CAR AR model) may have greater 

benefits. 

Our results showed that rainfall and average humidity were im- 

portant covariates that influenced the number of dengue cases at 

a monthly temporal resolution. Using a simple correlation analy- 

sis, Malik et al., 2017 found that the occurrence of Aedes aegypti 

as the vector of dengue was strongly influenced by climatic fac- 

tors (temperature, rainfall and humidity), and rainfall as well as 

humidity were dominant in their association with vector breeding. 

This importance of rainfall is in agreement with some other stud- 

ies, but the direction of our association (negative for monthly data) 

was surprising. Using a Bayesian method, Lowe et al., 2016 also re- 

ported a result somewhat similar to that found in our study that 

there was a negative correlation between precipitation 4–6 months 

previously and the relative risk of dengue. Another study in In- 

donesia examined the relationship between five climatic factors 

(rainfall anomalies, rainfall, humidity, temperature, and Southern 

Oscillation Index (SOI)) and provincial-scale dengue/dengue haem- 

orrhagic fever (DHF) for eight chosen provinces using the combi- 

nation of multiple regression and Pearson correlation analysis and 

found an inconsistent relationship between dengue incidence and 

climatic factors across the eight provinces ( Arcari et al., 2007 ). 

They found that rainfall anomalies, rainfall and humidity exhib- 

ited both negative and positive correlations across eight provinces. 

One possible reason for this is that heavy precipitation/rainfall can 

wash out mosquito breeding sites ( Thomson and Mason, 2019 ). 

This may be occurring in Makassar, but our result warrants further 

investigation. 

The strength of the preferred model (ST CAR localised with 

G = 3 with average humidity) is that it can differentiate be- 

tween groups of areas that display elevated values as well as ar- 

eas that display reduced values of the response. Rappocini district 

was identified as an outlier area with a high risk of dengue dis- 

ease, while in the same manner Ujung Tanah was identified as 

having a low risk of dengue disease. Rappocini is a suburban dis- 

trict in Makassar city and has a large number of slum areas. A 

World Health Organisation (WHO) report on dengue prevention 

and control in the South-East Asia region stated that the density 

of Aedes aegypti is higher in suburban areas than in urban areas in 

Indonesia due to the traditional water storage practices. Further- 

more, the premise index for Aedes aegypti was the highest in slum 

areas houses ( Plianbangchang, 2011 ). This may explain in part the 

results of our study. 

However, our results are limited by not having data on all co- 

variates for each of the spatial areas at each time period. This was 

understandable in this case study as Makassar covers a small area 

(175.79 km 

2 ) and has a small number of areas (14 administrative 

districts). A more complete dataset may affect the results. Addi- 

tionally, for dengue data the greatest temporal resolution avail- 

able was monthly. Given the incubation period is much less than 

1 month within mosquitos (8 to 12 days), and humans (3 to 14 

days), having daily or weekly data would have been preferable to 

examine climatic influences. 

5. Conclusions 

In summary, our results suggest that using appropriate Bayesian 

spatio-temporal models enables identification of different groups 

of areas and the impact of climatic covariates. Detection of specific 

high-risk areas and of the interplay between these areas, climatic 

variables and the temporal resolution of the data, is beneficial for 

the policy maker as it may help in decision making. 
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