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Abstract 

Background: There is an expanding literature on different representations of spatial random effects for different 
types of spatial correlation structure within the conditional autoregressive class of priors for Bayesian spatial models. 
However, little is known about the impact of these different priors when the number of areas is small. This paper 
aimed to investigate this problem both in the context of a case study of spatial analysis of dengue fever and more 
generally through a simulation study.

Methods: Both the simulation study and the case study considered count data aggregated to a small area level in a 
region. Five different conditional autoregressive priors for a simple Bayesian Poisson model were considered: inde-
pendent, Besag-York-Mollié, Leroux, and two variants of a localised clustering model. Data were simulated with eight 
different sizes of areal grids, ranging from 4 to 2500 areas, and two different levels of both spatial autocorrelation and 
disease counts. Model goodness-of-fit measures and model estimates were compared. A case study involving dengue 
fever cases in 14 local areas in Makassar, Indonesia, was also considered.

Results: The simulation study showed that model performance varied under different scenarios. When areas had 
low autocorrelation and high counts, and the number of areas was at most 25, the BYM, Leroux and localised G = 2 
models performed similarly and better than the independent and localised G = 3 models. However, when the num-
ber of areas were at least 100, all models performed differently, and the Leroux model performed the best. Overall, 
the Leroux model performed the best for every scenario especially when there were at least 16 areas. Based on the 
case study, the comparative performance of spatial models may also vary for a small number of areas, especially when 
the data have a relatively large mean and variance over areas. In this case, the localised model with G = 3 was a better 
choice.

Conclusion: Detecting spatial patterns can be difficult when there are very few areas. Understanding the character-
istics of the data and the relative influence of alternative conditional autoregressive priors is essential in selecting an 
appropriate Bayesian spatial model.
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Background
Spatial models are widely used in many fields. A com-
mon application is disease mapping [1–6] where typically 
the region is partitioned into n neighbouring small areas 

with the aim of estimating the overall spatial pattern of 
disease incidence, survival or risk [1, 7]. Bayesian spatial 
models are commonly used for this problem, with the 
model comprising a multiplicative relationship of avail-
able covariates and an additional random effects term 
that describes the residual spatial autocorrelation. These 
spatial random effects are often represented by a con-
ditional autoregressive (CAR) distribution [7]. A range 
of CAR priors has been proposed, such as the intrinsic 
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conditional autoregressive (ICAR) model [8], the Besag, 
York & Mollié (BYM) model [8], the Cressie model [9], 
the Leroux model [10], locally adaptive [11] and localised 
models [12].

Several of these models have been compared using 
simulated data. For example, the BYM model was found 
to perform well when compared against assorted mixture 
models, non-parametric smoothing methods and some 
partition models [1, 13]. However, when the BYM model 
was compared against both Leroux and Cressie models, 
the Leroux model was preferred due to its flexibility in 
representing a range of spatial correlation scenarios [7]. 
In another study, the BYM, Leroux and locally adaptive 
models were compared, and the locally adaptive mod-
els were found to perform better [11]. In another study 
which modelled the relative risk of HIV in India, the 
Poisson log-normal model and various CAR models such 
as BYM CAR, ICAR, proper CAR [14], Leroux CAR and 
dissimilarity CAR [15] models were compared [16]. The 
authors found that the BYM model was the best among 
all the models considered based on the deviance informa-
tion criterion (DIC) values.

A common feature in all these comparisons is that there 
has been a relatively large number of areas in the study 
region (range: 170 to 271). However, this is not always the 
case. There is a growing number of studies that employ 
spatial models over regions with comparatively few areas. 
This may affect the estimation of the spatial parameters 
in the above models.

In this paper, we investigate the relative performance 
of Bayesian spatial models when there are few areas via 
a simulation study. In keeping with the disease mapping 
theme, we focus on a Poisson likelihood and consider 
the BYM, Leroux and localised priors. For reference, the 
corresponding independent model which ignores spatial 
autocorrelation is also included. A case study of dengue 
incidence across the 14 geographic regions of Makassar, 
Indonesia, is also considered. The overall aim is to evalu-
ate which spatial models are likely to be appropriate for a 
small number of areas under different scenarios.

Methods
Simulated data
A simulation study was designed to examine the impact 
of a small number of areas on model goodness-of-fit of 
spatial models using various Bayesian spatial model spec-
ifications. Based on the aim of this paper, 50 replicate 
datasets of disease counts were generated under each 
of 32 scenarios: eight different numbers of regular areal 
grids (2 × 2, 3 × 3, 4 × 4, 5 × 5, 10 × 10, 15 × 15, 20 × 20 
and 50 × 50), two different degrees of spatial autocorre-
lation (low, high) and two different levels of counts (low, 

high). This resulted in a total of 1600 datasets. The size of 
every areal grid in this simulation is one unit. The total 
area covered increased as the number of regular areal 
grids increased.

The following procedure was used to generate the 
synthetic data. First, an underlying spatial random field 
(USRF) was generated using a Gaussian decay function 
with bandwidths 0.1 and 3 for low and high degrees of 
autocorrelation, respectively. Modified Moran’s I (MMI) 
was calculated to confirm that the higher bandwidth 
produced a larger degree of spatial autocorrelation as 
desired. For numerical stability, the USRF was generated 
on the log scale, and rescaled to ensure an adequate effect 
size is achieved. We calculated the SIRs directly from 
the USRF. SIR values were generated by generating the 
underlying spatial random field (USRF), as can be seen in 
step 1 of the R code (Additional file  1). The descriptive 
summary of counts and SIRs from the simulated data for 
every scenario are given in Additional file 2.

Second, pseudo observed values 
(

ypseudo
)

 were gener-
ated for each area using a gamma distribution. These 
values were subsequently ordered to resemble a similar 
spatial pattern to the USRF.

Third, pseudo expected values ( Epseudo ) were computed 
by using Epseudo = ypseudo/USRF .

Fourth, to get observed value ( y ), the pseudo observed 
values are rescaled to match the desired number of 
counts per area on average, yav , using values 1 and 10 for 
low and high counts respectively. This was subsequently 
rounded to an integer value (which may cause small devi-
ations from the total number of desired counts, yav × 1 
and yav × 10 for low and high counts, respectively). As 
a result, the low and high levels of count data had mean 
values around 1 and 10, respectively.

Lastly, to get the expected value ( E ), the pseudo 
expected counts were rescaled so that the sum of the 
observed and expected counts are equal, that is, sum 
(y) = sum(E).

We devised this method of simulating spatial data spe-
cifically to allow control over the range of the USRF and 
SIR values (effect size), the average observed counts per 
area (low, high), and the degree of spatial autocorrela-
tion, while maintaining the necessary constraints like 
sum(y) = sum(E), y is discrete, and y/E reflects the same 
pattern as the USRF at least to a large degree. No exist-
ing method of simulating spatial data that we are aware 
of allows this level of control while satisfying these 
conditions.

R code used to generate synthetic data are provided as 
supplementary information (see Additional file 1). Exam-
ples of generated datasets under different scenarios for 
10 × 10 areas with low and high spatial autocorrelation 
and low and high counts are given in Fig. 1. Figure 1a, c, 
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with bandwidth 0.1, exhibit spatial independence (ran-
domness), while Fig.  1b, d, with bandwidth 3, showed 
that values of similar magnitude were clustered together 
indicating positive spatial autocorrelation.

Models
A Bayesian Poisson model was formulated as follows. For 
the ith area, i =1,…, I.

where yi is the observed number of cases; Ei is the 
expected number of cases; and θi is the standardised inci-
dence ratio (SIR) which is modelled on the log scale by 
an overall constant rate, α, and a corresponding residual 
ψi . These residuals were either modelled as independent 

yi ∼ Poisson(Eiθi)

log(θi) = α + ψi

Fig. 1 Example results for simulated datasets for 100 areas under different scenarios. a low spatial autocorrelation and low counts, b high spatial 
autocorrelation and low counts, c low spatial autocorrelation and high counts, and d high spatial autocorrelation and high counts. Obs, exp, USRF 
represented observed values, expected values, and underlying spatial random field, respectively
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and normally distributed (independent model below) 
or as a combination of independent and spatial random 
effects, with the latter described by a CAR prior. This 
prior provides a sparse approximation of the covariance 
matrix by specifying a local neighbourhood for each area 
and a corresponding adjacency weight matrix with ele-
ments wij corresponding to the ith and jth areas. We fol-
low a common setup for disease mapping, with a first 
order neighbourhood structure (Queen’s adjacency) and 
binary spatial weights, such that areas that share a com-
mon boundary are considered to be neighbours with 
wij = 1 , and wij = 0 otherwise. Three forms of spatial 
CAR priors were considered, namely the BYM, Leroux 
and localised models. All models are described below 
and were fit using the CARBayes package version 5.0 
[15] in R version 3.6.1 [17]. Convergence of each model 
parameter was checked via the Geweke diagnostic [18], 
where a p value > 0.05 indicated likely convergence, and 
supplemented by trace and density plots for a subsample 
of SIRs for each model.

Independent model
The independent model has no specific term to describe 
any spatial autocorrelation, so the residual is simply mod-
elled by an unstructured spatial random effect, vi [15]. 
Under this model,

BYM model
Possibly the most well-known Bayesian spatial model for 
areal disease mapping is the BYM model [8]. Under this 
model,

where ui and vi are the structured and unstructured spa-
tial random effects for area i respectively. As above, a nor-
mal distribution was specified for vi , i.e., vi ∼ N

(

0, τ 2v
)

 . 
An intrinsic conditional autoregressive (ICAR) prior dis-
tribution was specified for ui , such that 

The variance terms τ 2u and τ 2v  were assigned weakly 
informative priors, namely InverseGamma(1, 0.01),

which is the default hyperprior specification in CAR-
Bayes [15].

Leroux model
Whereas the BYM CAR model contains two sets of ran-
dom effects, the Leroux model has only a single spatial 
random effect, ui , that adjusts the strength of the local 
neighbourhood spatial autocorrelation by a constant ρ . 
The model is thus given by 

with hyperpriors given by τ 2u ∼ InverseGamma(1, 0.01) 
and ρ ∼ Uniform(0, 1).

When ρ = 1 this prior reduces to the intrinsic CAR 
model and when ρ = 0 it reduces to the independent 
model [15].

Localised models
The localised model, proposed by Lee and Saran [19], 
allows the neighbourhood random effects to markedly 
differ across the geographic space. This is achieved by 
partitioning the areas into a maximum of G groups and 
including a group-specific intercept in the model. An 
intrinsic CAR prior allows for spatial smoothing across 
the surface, while the group intercept allows for adja-
cent areas in different groups to be considered disjoint, 

ψi = ui + vi

(

ui|uj , i �= j, τ 2u

)

∼ N

(
∑

j ujwij
∑

j wij
,

τ 2u
∑

j wij

)

.

ψi = ui

(

ui|uj , i �= j, τ 2u

)

∼ N

(

ρ
∑

j ujwij

ρ
∑

j wij + 1 − ρ
,

τ 2u

ρ
∑

j wij + 1 − ρ

)

.

The prior for the variance τ 2v  was specified by a 
vaguely informative inverse Gamma distribution, 
InverseGamma(1, 100) , which is consistent with the 
implied prior belief that the data do not exhibit spatial 
autocorrelation.

ψi = vi

vi ∼ N
(

0, τ 2v

)

.
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enabling distinctly different values. The model is given 
by 

where τ 2u ∼ InverseGamma(1, 0.01) and 
�j ∼ Uniform

(

�j−1, �j+1

)

 for j = 1, 2, . . . ,G . The group 
means �1 < �2 < �3 < . . . < �G , where �0 = −∞ and 
�G+1 = +∞ . A latent variable Zi determines the alloca-
tion of the ith area to a group,

where the penalty parameter δ ∼ Uniform(1, 10), and 
G∗ = (G + 1)/2 and G∗ = G/2 if G is odd and even, 
respectively. The value of G is fixed and the recommen-
dation is for it to be small odd value [19].

Comparing models
The goodness-of-fit of the models was compared using 
the Watanabe-Akaike Information Criterion (WAIC) 
[20]. A smaller value of WAIC indicates a better model 
fit. The Modified Moran’s I (MMI) [21], which can meas-
ure spatial autocorrelation even for small numbers of 
areas (less than 100), was also calculated using the residu-
als in order to assess model adequacy, using a confidence 
level of 0.05. The MMI follows a t-distribution with n–2 
degrees of freedom [21]. A MMI estimate close to zero 
indicates that the model has appropriately accounted for 
any spatial structure [2]. The modelled standardised inci-
dence rate (SIR), θi , was also estimated for each area. The 
posterior SIR median and 95% credible interval could 
vary across model scenarios if there is a relatively large 
contrast counts (observed or expected) between areas.

Case study
The five models described above were applied to a sub-
stantive case study of dengue fever in 2002, 2010, 2011, 
2013 and 2015 from Makassar, Indonesia. These years 
were selected to provide both similarity (in the absolute 
MMI estimate) and contrast (in the counts) to the simu-
lated scenarios. The annual number of reported dengue 
cases was obtained for these years in each of the 14 geo-
graphic areas of Makassar. The area of Makassar is 175.77 
square km with a population of approximately 1.5 million 
in 2017 (737,146 males and 751,865 females). Across the 
14 geographic areas, resident population numbers ranged 
from 28,696 to 208,436 (median: 99,246) [22]. The data 

ψi = ui + �Zi

(

ui|uj , i �= j, τ 2u

)

∼ N

(
∑

j ujwij
∑

j wij
,

τ 2u
∑

j wij

)

.

f (Zi) ∝ exp(−δ(Zi − G∗)2)

were provided by the City Health Department of Makas-
sar, South Sulawesi Province.

Results
Simulated data
The simulated data for low counts had a mean value 
around 1, with maximum values ranging from 2 to 14, 
median values ranging from 0 to 1.5, and variance rang-
ing from 0.92 to 4.12. The simulated data for high counts 
had a mean value around 10, with maximum values rang-
ing from 16 to 140, median values ranging from 3 to 11, 
and variance ranging from 44.67 to 387.13. Area-level 
analyses of dengue fever would often have both high and 
low counts present and, particularly for high counts and 
as the numbers of areas increase, this diversity of counts 
across areas is present in our simulated data (see Addi-
tional file 2).

Box-plots of MMI estimates for the 50 replicates of 
data over the 32 different scenarios are shown in Fig. 2. 
Figure  2 indicates that MMI, a measure of spatial auto-
correlation, performs poorly when there are very few 
areas (2 × 2), but tends to capture especially high spatial 
autocorrelation even when the number of areas is rela-
tively small (4 × 4, and 5 × 5 areas). MMI estimates for 
low autocorrelation are close to zero, while the MMI esti-
mate for high autocorrelation are close to one.

The residuals for the five models were also tested for 
spatial autocorrelation using MMI statistics. The results 
are depicted in Fig. 3. It can be seen that when there is 
strong spatial structure in the data, the test correctly 
identifies spatial autocorrelation in the residuals of the 
independent model but not in the residuals of the spatial 
models. However, this differential is not as clear when the 
autocorrelation is low and the number of areas is small.

The results of the WAIC values and corresponding 
95% credible intervals for the five models are shown in 
Table  1. Boxplots of the WAIC values are presented as 
supplementary information (see Additional file 3).

Overall, based on the mean WAIC (Table  1), when 
areas had low autocorrelation and high counts, mod-
els performed differently for all number of areas. Inter-
estingly, when the number of areas is at most 5 × 5, the 
BYM, Leroux and localised G = 2 models often per-
formed similarly, but noticeably better than the inde-
pendent and localised G = 3 models. However, when 
the number of areas were at least 10 × 10, all models 
performed differently, with the Leroux model having the 
best goodness-of-fit according to WAIC.

The Leroux model had the best fit, and the independ-
ent model had the worst model fit for every scenario 
especially when the number of areas at least 16 areas 
based on the WAIC.
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When the simulated data had low autocorrelation and 
low counts, the models performed differently for at least 
5 × 5 areas. In this scenario, the independent model had 
a worse model fit than the remaining four models, which 
had a similar model fit to each other.

SIR estimates
The posterior median and 95% credible intervals of the 
SIR for each model for every scenario are given in Fig. 4.

Generally, the independent model results differed from 
the other four models. As expected, this model tended to 
produce more extreme SIR estimates (further from one) 
and wider credible intervals under every scenario. This 
is partly due to the relatively vague prior, which reduces 
the amount of shrinkage in the spatial random effect, 

Fig. 2 Modified Moran’s I estimates for simulated count data. LA LC low spatial autocorrelation and low counts, HA LC high spatial autocorrelation 
and low counts, LA HC low spatial autocorrelation and high counts, HA HC high spatial autocorrelation and high counts
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Fig. 3 Modified Moran’s I estimates for residuals
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but may be also influenced by the shrinkage towards the 
global mean of zero rather than the local neighbourhood 
mean.

Case study: dengue fever incidence in Makassar, Indonesia
Dengue fever diagnoses fluctuate between years and 
areas in Makassar, Indonesia. The descriptive analysis 
of dengue cases in 2002, 2010, 2011, 2013, and 2015 are 
given in Table 2.

From Table  2, it is apparent that there is substantial 
variation both within and between years, with the mean 
and variance of dengue cases in 2002 much larger than 
the other years. In 2002, a total of 1467 cases were diag-
nosed with a median of 86 cases per area. In this year, 
one area (Rappocini district) has much higher number 
of dengue cases than the remaining 13 areas. However, 
in 2010 only 185 cases were diagnosed, with a median 
of 8.5 cases per area. Each of the years examined had 

Table 1 Mean WAIC values and 95% credible intervals for every model

WAIC Watanabe-Akaike Information Criterion, LA LC low autocorrelation and low counts, LA HC low autocorrelation and high counts, HA LC high autocorrelation and 
low counts, HA HC high autocorrelation and high counts

Underline represents the lowest mean WAIC out of the 5 models

Italics per row indicates that models perform similarly

Areas Levels WAIC Mean (95% CI)

Independent BYM Leroux Localised G = 2 Localised G = 3

2 × 2 LA LC 8.7 (4.8, 11.8) 11.3 (6.7, 16.2) 11.4 (6.6, 16.3) 11.4 (6.6, 16.4) 11.1 (6.5, 16.1)

HA LC 49.6 (5.0, 206.3) 12.1 (7.2, 18.0) 12.1 (7.2, 17.9) 12.1 (7.1, 17.6) 34.9 (7.1, 180.2)

LA HC 153.1 (53.7, 358.4) 79.7 (38.4, 124.3) 80.0 (37.7, 122.9) 83.5 (36.6, 144.4) 163.7 (49.2, 506.6)

HA HC 524.8 (64.7, 1915.3) 91.6 (41.4, 151.6) 91.4 (41.3, 149.3) 95.2 (41.0, 163.1) 360.2 (54.6, 2170.8)

3 × 3 LA LC 18.6 (13.4, 23.5) 19.6 (14.7, 26.7) 19.7 (14.4, 26.8) 19.6 (14.5, 26.9) 19.6 (14.4, 26.6)

HA LC 530.4 (30.6, 446.7) 19.7 (15.2, 24.9) 19.5 (15.1, 24.8) 19.5 (14.9, 25.0) 35.1 (17.4, 81.9)

LA HC 253.5 (143.9, 420.3) 112.3 (65.9, 185.6) 112.2 (62.0, 187.8) 112.5 (62.4, 188.9) 160.0 (78.1, 364.4)

HA HC 5397.6 (302.7, 5134.2) 111.1 (73.7, 166.6) 108.0 (68.9, 163.2) 108.7 (67.3, 163.3) 281.0 (98.2, 687.9)

4 x 4 LA LC 33.5 (24.1, 40.9) 32.6 (24.1, 40.9) 32.6 (23.9, 40.7) 32.6 (24.0, 40.9) 32.6 (23.9, 40.9)

HA LC 177.3 (73.8, 563.5) 33.6 (25.5, 43.6) 33.3 (25.2, 43.2) 36.1 (25.4, 83.3) 44.5 (28.0, 76.0)

LA HC 400.2 (244.4, 632.0) 158.8 (95.5, 240.0) 156.4 (93.9, 235.1) 158.0 (95.1, 237.1) 193.5 (103.9, 310.0)

HA HC 1820.7 (645.1, 6367.0) 168.5 (105.1, 272.7) 162.9 (101.2, 263.1) 195.3 (101.6, 748.3) 280.1 (125.0, 568.1)

5 x 5 LA LC 50.7 (39.4, 60.6) 46.4 (36.8, 60.4) 46.4 (37.0, 60.6) 46.4 (37.0, 60.6) 46.4 (36.9, 60.5)

HA LC 270.7 (111.8, 443.2) 48.6 (35.7, 62.9) 48.2 (35.5, 62.6) 48.9 (35.4, 68.4) 219.9 (39.8, 115.9)

LA HC 530.1 (377.7, 717.7) 205.5 (149.1, 308.3) 202.9 (150.0, 300.7) 203.4 (149.6, 298.9) 225.8 (158.3, 329.2)

HA HC 2795.1 (1116.3, 4045.0) 226.6 (135.9, 351.9) 217.6 (132.6, 333.1) 227.0 (130.5, 393.5) 2169.8 (156.8, 1011.9)

10 x 10 LA LC 194.4 (175.2, 214.8) 166.4 (150.2, 178.9) 166.1 (150.3, 178.4) 166.3 (150.3, 178.4) 166.2 (150.2, 182.4)

HA LC 479.2 (408.2, 563.8) 186.6 (157.5, 216.7) 185 (155.5, 215.6) 190.3 (158.7, 269) 449.5 (158.7, 222.2)

LA HC 1460.1 (1349.4, 1557.7) 612.9 (502.5, 723.9) 592.9 (489.7, 713.5) 602.5 (486.8, 741.3) 610.6 (493.2, 724.1)

HA HC 4326.9 (3530.2, 5334.6) 817.9 (537.3, 1210.9) 771.3 (516.3, 1133.3) 832.8 (520.5, 1753.0) 3548.4 (562.6, 1204.5)

15 x 15 LA LC 426.0 (398.2, 448.8) 367.4 (346.3, 392.2) 366.7 (345.7, 391.4) 367.2 (346.0, 392.6) 367.0 (345.6, 391.6)

HA LC 817.0 (727.8, 905.9) 404.9 (354.7, 449.2) 402.2 (351.9, 445.7) 410.2 (354.3, 446.2) 411.9 (359.8, 482.4)

LA HC 2783.0 (2668.2, 2923.1) 1259.3 (1098.0, 1469.6) 1210.6 (1066.7, 1411.1) 1230.4 (1059.5, 1465.1) 1233.5 (1078.1, 1460.4)

HA HC 6770.8 (5681.6, 7975.3) 1621.2 (1133.3, 2217.3) 1529.4 (1071.5, 2059.6) 1629.4 (1099.6, 2133.9) 1637.1 (1145.9, 2353.9)

20 x 20 LA LC 737.6 (704.9, 771.7) 642.1 (611.7, 671.2) 640.9 (610.8, 670.0) 641.7 (610.9, 670.0) 641.5 (610.6, 670.1)

HA LC 1227.4 (1139.6, 1304.1) 697.8 (626.7, 778.1) 694.2 (625.1, 774.8) 713.6 (625.1, 850.5) 707.9 (627.1, 787.4)

LA HC 4374.6 (4240.8, 4543.4) 2106.5 (1836.8, 2351.5) 2029.9 (1784.1, 2246.3) 2062.7 (1786.8, 2359.2) 2063.2 (1802.1, 2325.0)

HA HC 9425.4 (8401.6, 10431.7) 2613.9 (2020.9, 3419.3) 2483.1 (1972.5, 3207.7) 2713 (1954.2, 4157.8) 2632.9 (1992.7, 3451.8)

50 x 50 LA LC 4222.5 (4153.0, 4305.9) 3880.0 (3757.4, 3981.6) 3875.3 (3753.6, 3979.0) 3877.5 (3757.8, 3979.3) 3876.8 (3752.9, 3977.8)

HA LC 5315.6 (5107.9, 5514.9) 4064.8 (3901.2, 4234.0) 4054.3 (3886.6, 4217.4) 4060.1 (3890.3, 4217.1) 4076.6 (3896.9, 4360.9)

LA HC 18863.8 (18370.4, 
19290.3)

11508.6 (10749.7, 
12251.0)

11224.8 (10577.2, 
11922.3)

11415.1 (10696.4, 
12376.5)

11314.8 (10541.2, 12212.4)

HA HC 30471.4 (27777.6, 
32943.7)

13151.4 (11601.2, 
14633.0)

12731.1 (11244.9, 
13969.9)

12918 (11312.7, 14738.7) 12977.2 (11292.3, 15994.3)
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Fig. 4 The posterior medians and 95% credible intervals of SIR based on the simulated data. LA LC low autocorrelation, low counts; LA HC low 
autocorrelation, high counts. HA LC high autocorrelation, low counts; HA HC high autocorrelation, high counts



Page 10 of 14Aswi et al. Int J Health Geogr           (2020) 19:39 

low autocorrelation based on the MMI estimates and 
high counts.

To obtain the disease risk estimates, raw standardised 
incidence ratio (SIR) for each area can be used. Raw SIR 
is the ratio of the observed number of dengue cases (yi) 
to the expected number of dengue cases in each area 
(Ei) as follows:

Expected number of cases can be calculated as follows:

SIRi =
yi

Ei

Ei =

∑

i yi
∑

i ni
ni

Table 2 Descriptive analysis of dengue cases in 2002, 2010, 2011, 2013, and 2015

Year Dengue cases Min 1st Qu Median Mean 3rd Qu Max Var MMI estimate

2002 1467 14 44.00 86.00 104.80 98.00 419 10622.80 −0.36

2010 185 1 6.25 8.50 13.21 16.75 45 147.26 −0.36

2011 85 1 2.00 3.00 6.07 9.25 16 29.46 −0.19

2013 265 4 9.00 13.50 18.93 27.75 52 210.22 0.19

2015 142 2 4.75 8.00 10.14 14.00 26 50.59 −0.20

Fig. 5 Raw SIR maps for five time periods



Page 11 of 14Aswi et al. Int J Health Geogr           (2020) 19:39  

where ni denoting the number of population at area i. The 
raw SIR maps for years 2002, 2010, 2011, 2013 and 2015 
are given in Fig. 5.

The WAIC were used to compare the goodness-of-fit 
of the models. The WAIC values of dengue cases for five 
models are shown in Table 3.

Even though the MMI estimates were the same for 
dengue cases in 2002 and 2010 (Table  2), the model 
goodness-of-fit was substantively different (Table  3). 
Dengue cases in 2002 had a mean (104.80) and variance 
(10622.80) much higher than the mean (13.21) and vari-
ance (147.26) in 2010.

In 2002, Independent, BYM and Leroux model per-
formed similarly, but differed from localised G = 2 and 
localised G = 3 models in terms of WAIC. In this year, 
the localised model with G = 3 performed better than 
the localised model with G = 2 . The estimate of ρ for the 
Leroux model in 2002 was 0.08, indicating that there was 
very little spatial smoothing.

In 2010, BYM and Leroux models performed similarly 
but differed from localised and independent models. In 
this year, the localised model with G = 2 performed the 
best followed by the localised model with G = 3.

The localised model with G = 3 in 2002 and 2013 
consisted of three groups while under G = 2 only con-
sisted of two groups. Despite this, modelled SIR esti-
mates were relatively similar between areas under both 
models (Additional file  4). In both years and models, 
one area (SIR > 2.0) formed its own group. In 2002 it 
was Rappocini district, and in 2013 it was Manggala.

In 2010, 2011 and 2015, both localised G = 2 and 
localised G = 3 models comprised the same areas in 
each group (2, 1 and 1 groups, respectively).

It seems that the number of dengue cases, the vari-
ance, and any outliers influence the number of groups 
as seen in 2002. As mentioned earlier in the case study 
section, the outlier (Rappocini district in 2002) was a 
valid observation so was not removed in the analysis.

Dengue data in 2011 and 2015 also had similar MMI 
estimates (-0.2), but the model goodness-of-fit was sub-
stantively different (Table  3). In 2011, the BYM model 
had the lowest WAIC out of the models considered. 
The Leroux, localised G = 2 and localised G = 3 models 
had a similar model fit based on WAIC, but the inde-
pendent model gave the highest WAIC out of the mod-
els considered. Interestingly, the dengue data in 2015 
had similar descriptive statistics with the simulated 
data for high counts. The observed mean of the den-
gue cases in this year was 10.14, and the mean simu-
lated data is 10. The BYM, Leroux, localised G = 2 and 
localised G = 3 models were similar model fit based on 
WAIC and provided a better fit than the independent 
model, which is similar to the results of the simulation 
study. The estimate of ρ for the Leroux model in 2011 
and 2015 was 0.35 and 0.39 respectively, indicating that 
there was very little spatial smoothing. Both the local-
ised with G = 2 and G = 3 models in 2011 and 2015, 
which allows for up to two and three groups of areas 
respectively, consisted only one group. The SIR of each 
areas in 2011 and 2015 are relatively similar, that is, 
around 1 (see Additional file 4).

Furthermore, in 2013, the localised with G = 3 model 
had the lowest WAIC. The estimate of ρ for the Ler-
oux model in 2013 was 0.13, indicating that there was 
very little spatial smoothing. The localised with G = 2 
and G = 3 models in 2013 consisted of two groups and 
three groups, respectively (see Additional file 4).

Discussion
Five different Bayesian spatial models have been inves-
tigated with respect to their ability to provide a good 
model fit and accommodate spatial autocorrelation in 
the context of a small number of areas. Our study showed 
that spatial models may fit the data better even when 
there is low autocorrelation and low counts, especially 
when there are at least 25 areas. All of our spatial mod-
els allowed for some unstructured variation in the results, 
and possibly this flexibility is what is driving our results. 
The estimates of ρ for the Leroux model when using sim-
ulated data that had low spatial autocorrelation and high 
counts ranged from 0.04 to 0.27, closer to 0, indicating 
some, but weak, spatial autocorrelation. Furthermore, the 
estimates of ρ for the Leroux model when using simu-
lated data that had low spatial autocorrelation and low 
counts ranged from 0.19 to 0.50.

Overall, our simulation study showed that the Leroux 
model performed well for all models under every simu-
lated scenario, especially when there are at least 16 areas. 
This result is in agreement with another study (with 271 

Table 3 WAIC of dengue cases for five models

Italics represents the lowest WAIC out of the 5 models

Model

Independent BYM Leroux Localised 
G = 2

Localised G = 3

2002 115.14 114.92 116.19 175.08 124.54

2010 90.55 84.12 84.98 79.68 81.79

2011 78.05 72.49 76.04 76.07 75.47

2013 92.17 92.89 91.41 97.23 91.36

2015 84.56 73.32 73.59 73.29 73.39
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areas) that reported the Leroux model was preferred 
when compared against BYM and Cressie models [7].

Our case study results largely agree with the simulation 
study findings, especially for the dengue data in 2015. 
All Bayesian spatial models (BYM, Leroux and localised 
models) also performed better (lower WAIC) than the 
independent model once the number of areas was at least 
25. This may be due in part to the localised models often 
forming just the one group in both simulated and case 
study data when there were low counts, and 2 groups 
when counts were high (Additional file 5).

The localised models are a better choice when the 
counts data and the variation in the counts between areas 
are high as seen in the 2013 dengue data. Both local-
ised G = 2 and G = 3 gave very similar SIR values, even 
when the number of groups differed. However, there is 
a risk that using an even G value may result in different 
intercepts even when a smooth risk surface is ideal, so 
if only one localised model is used, it should be a small 
odd value [19]. The localised model’s specialty is to allow 
for large variation between adjacent areas. When this is 
unnecessary, the extra complexity in this model becomes 
superfluous, making it a poor choice. One drawback of 
the localised models is the inherent uncertainty in the 
forming of groups. Running the same model, under the 
same specifications and data, can result in slight discrep-
ancies in group assignment. To ensure reproducibility of 
results, models should be run multiple times, e.g. 5, and 
the most common grouping used.

Our study also clearly demonstrated the difficulty in 
detecting spatial patterns when the number of areas is 
very few (4, or even 9 areas). Even the high autocorrela-
tion and high count data was difficult to distinguish from 
a random pattern.

Other studies have used 10 sub-districts [23, 24], 30 
sub-districts [25], and 38 districts [26] for modelling den-
gue fever in Indonesia. Most of these papers used ICAR 
for the spatial structured random effect component. Our 
findings could be beneficial as a guideline in choosing 
spatial models in modelling disease in general under dif-
ferent scenarios.

The SIR results were largely similar between the dif-
ferent spatial models, although when there were fewer 
areas, sometimes differences in estimate precision (as 
evidenced by the credible intervals) were observed. These 
differences became vanishingly small as the number of 
areas increased. This differed from the markedly different 
results observed for the independent model. This may be 
influenced in part by the spatial models having the same 
hyperpriors on their spatially correlated term. Bayesian 
spatial models are known to be sensitive to the choice of 
hyperprior, and limitations of software necessitated using 
the InverseGamma distributions. Ideally, trying different 

distributions (such as a Uniform prior on the standard 
deviation [27]), as well as considering different hyperpa-
rameters within each distribution, is recommended.

A limitation of this study is that the simulated data 
may have been influenced by the neighbourhood struc-
ture. In terms of the choice of spatial weights, the 
first-order adjacency specification seems appropriate 
and has been shown to be a good universal choice for 
implementing spatial smoothing in general [28]. Addi-
tionally, real boundaries generally do not exhibit a grid-
style structure, but instead define areas that vary in size, 
shape and number of neighbours. However, grids have 
been used in conjunction with real data [29, 30] and the 
choice of the specification of the spatial weights matrix, 
being first-order adjacency, is likely to minimise what-
ever impact this may have. Our approach differentiates 
between low and high counts. This could be modified to 
differentiating between low and high SIR values, which 
of course may be different if the underlying population 
sizes vary. Our simulation study results are limited by 
not having a relatively large contras in the magnitude 
and variation on counts over areas as seen in the case 
study in certain years. Future work could consider the 
relatively large variation in the counts between areas. 
Another limitation of this simulated data is that only 
means of 1 and 10 were considered as low and high 
counts, respectively. Often regions are divided into fine 
geographical resolution, resulting in relatively small 
average counts, however, if there are average counts 
markedly greater than 10, this may affect the results.

Conclusion
In conclusion, the results of this study show that using 
Bayesian spatial models that allow for both spatial and 
unstructured correlation can often provide solid and 
stable results, despite the data characteristics. None-
theless, detecting spatial patterns will be difficult when 
there are very few areas. Important data characteristics 
to consider include the magnitude of the response vari-
able mean and variance, as well as the presence of spa-
tial autocorrelation. Understanding the characteristics 
of the data and the relative performance of contended 
models is essential in choosing an appropriate analytic 
approach.

Care is needed in choosing a spatial model when 
the number of areas is at least 100, especially when 
the overall disease rate is high, as models can perform 
differently.
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