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Abstract. This paper depicts the frameworks of spatial regression methods which cover the 

spatial interaction effects and apply it to analyze the spatial distribution of poverty area for five 

districts in West Sulawesi. These methods consider queen contiguity-based spatial weights to 

create spatially lagged variables and apply to Spatial Lag Model, Spatial Error Model (SEM), 

Spatial Durbin Model and Ordinary Least Square (OLS) Model. The percentage of poverty 

area represents the observed dependent variable in this article while several independent 

variables are recorded by the previous research and correlated to poverty. The analysis results 

showed that the spatial effects should be involved to the econometric model because an 

estimated spatial parameter is statistically significant. To select  model criteria, AIC and 

Likelihood ratio test are used and this criteria highlight Spatial Lag Model is better than the 

other model.  

Keyword: Spatial econometric, mapping poverty area, west sulawesi 

1.  Introduction 

Poverty alleviation is one of the nation’s most important challenges and need some strategies to reduce 

this root causes. In 2017, the national poverty line reached its lowest point for almost two decades, 

which was 10.12 percent. Data released by the Badan Pusat Statistik (BPS), Indonesia, in the year 

2017 shows that the percentage of Indonesia's poor is reduced by 0.58 percentage points (year-on-

year). However, based on the latest statistical data and socioeconomic development, Indonesia is 

continuing its efforts to eradicate extreme poverty both in rural and urban areas today. From the 

dynamics of the poverty rate in 2009-2017, the percentage of rural poverty rate is higher than urban 

poverty. It was 13.47 percent accounted for roughly 16.31 million people, while urban areas was 7.26 

percent at approximate 10.27 million. In the period 2010-2014, the level of poverty reduction was at 

rural areas faster than urban areas [1]. 
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The number of poor population who have monthly per capita expenditure (MPCE) below the Poverty 

Line in West Sulawesi reached 151.78 thousand people (11.25 percent) for the year 2018. It 

experienced an increase of 2.3 thousand people compared to the number of indigent population for the 

previous year, who accounted for 149.47 thousand people (11.18 percent). 9.50 percent of the urban 

population was poor, compared to 11.70 percent of the rural population in 2017. In 2018, the 

percentage increase in the number of indigent population of urban and rural be 9.64% and 11.75% 

respectively. The role of food commodities towards the poverty line is greater than the role of non-

food commodities such as housing, clothing, education, and health. Donations Food Poverty Line to 

Poverty Line in March 2018 was recorded at 78.27 percent. This condition is not much different from 

the condition in September 2017 in the amount of 78.99 percent [2].  

To reduce poverty, it is important to know what factors are actually related to the level of poverty in 

Indonesia so that an effective public policy can be formulated to diminish it in the future and not only 

the number but also qualitative scale [3]. Modeling poverty using spatial econometrics has been done 

by [3] Zelinsky [4], Paraguas and Kamil [5], and Zewdie, Aidi and Sartono [6]. Moreover, a spatial 

modelling framework which explicitly calculate the correlation from a region to neighbouring regions 

may be more suitable. Particular locations contribute to increase the number of poverty incidence, 

suggesting the significance of neighbourhood influence [7].  

2.  Method 

2.1.  Case Data 

The data were collected from BPS Majene and BPS West Sulawesi on Measurement of 

Macroeconomic and Social Work in West Sulawesi. The response variable used is the percentage of 

poverty in five districts (Mamuju, Majene, Polewali Mandar, Mamasa and North Mamuju) with 

involving 240 observations. On the other side, the predictor variables that are assumed to have spatial 

correlation with the poverty are the percentage of literacy rate (X1), the percentage of regional budget 

(X2), the percentage of labour force participation rate (X3), the percentage of open unemployment rate 

(X4), percentage of income (X5) and the percentage of drinking-water sources (X6). Then, framework 

of R software is provided to analyze the model and assumptions. 

2.2.  Panel Data Regression 

Panel data is a combination of cross-section data and time series data. In the panel data, the same 

cross-section units are surveyed over several time periods. So, panel data has dimensions of space and 

time. If each cross-section unit has the same number of time series observations, then the panel data is 

called balanced panel data, whereas if the number of time series observations is different in each unit, 

it is called unbalanced panel data data). The panel regression model can generally be stated in the 

following form: 

TtNiituitity ,,3,2,1;,,3,2,1;  
it

βX
 

(1) 

where ity is i-th cross section unit for the t-time period, X  is Observation vector on the independent 

variable, β  is constant vector, it is intercept i-th object t-time, itu is regression error for t-i group the 

t-time, and  2,0~ IIDNuit  [8] [9] [10].  

 



ICSMTR 2019
Journal of Physics: Conference Series 1752 (2021) 012048

IOP Publishing
doi:10.1088/1742-6596/1752/1/012048

3

 

 

 

 

 

 

Common effect Model (CEM) approach assumes that the intercept and slope values of each variable 

are the same for all cross section units and time series 

TtNiituity ,,3,2,1;,,3,2,1;  
it

βX  (2)
 

Fixed effect Model (FEM) approach is assumed that the slope value of each variable is fixed but the 

intercept value is different for each unit cross section and fixed for each unit time series 

TtNiitu
iity ,,3,2,1;,,3,2,1;  

it
βX  (3)

 

2.3.    Spatial Weight Matrix 

Spatial weighting matrix is a matrix that states the relationship of the observation area that is sized 

nn  and symbolized by W . The general form of the spatial weighting matrix ( W ) is: 
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The elements W from above are ijw by i are rows in elements W and j are columns in elements W

and are the area around the observation i site. The above element W can have two values namely zero 

and one. Where the value 1ijw for the area adjacent to the observation location, while the value 

0ijw for the area that is not close to the observation location. In general, there are four types of 

interactions or border crossings. 

2.3.1.  Rook Contiguity. Rook Contiguity is the contact of one side of the territory with the other side 

of the neighboring territory. The value of each element is that if the locations of i and j are side to 

side then 1ijw . However, if the locations of i and j do not touch the sides then 0ijw .  

2.3.2.  Bishop Contiguity. Bishop contiguity is the percentage of a point of one region with another 

neighboring region. The value of each element is that if the locations of i and j are in contact with the 

angles then 1ijw . However, if the locations of i and j do not touch the angles then 0ijw . 

2.3.3.  Queen Contiguity. Queen Contiguity, namely contact between the sides and vertices of one 

region with another region, which is a combination of rook contiguity and bishop contiguity. The 

value of each element is if the locations of i and j touch the sides or vertices then 1ijw . However, if 

the locations of i and j do not touch the sides or vertices then 0ijw . 

2.3.4.  Customized Contiguity. Customized contiguity, this method defines 1ijw  for regions that 

coexist or regions with the same characteristics as the region of interest, and 0ijw for other regions. 
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2.4.  Spatial Autoregressive Model 

The spatial autocorrelation model is a combination of spatial lag effect model and spatial error model 

which calls most of the time Simultaneous autoregressive model or general spatial model according to 

(Lesage, 2009) 

TtNjiitu
N

j
jtWyity ,,3,2,1;,,3,2,1,;

1
 




it

βX  (5) 

it

N

j
jt

Wuitu  




1
 (6)

 

The positive and negative spatial autocorrelation can be determined with using value cluster in a map. 

If similar value cluster together, it tend to be a positive spatial correlation while if dissimilar value 

cluster together, it tend to be a negative spatial correlation [7]. 

2.5.  Spatial Lag Model 

When λ is equal 0 in Spatial Autocorrelation Model, it can derive other models SAR. Meaning, a 

spatial lag model or following SAR model can be formulated which is comparable to the time-series 

lagged dependent variable 

TtNjiiti

N

j
jtyijWity ,,3,2,1;,,3,2,1;

1
 



 
it

βX  (7)

 

2.6.  Spatial Error Model 

When 0 in Spatial Autocorrelation Model, the error term of a spatial error model (SEM) with 

spatial effect can be derived the form 

it

N

j
itij

Wit

TtNjiitiity


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



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1

,,3,2,1;,,3,2,1; 
it

βX

 (8)

 

2.7.  Spatial Durbin Model 

Spatial Durbin Model [11] can be expressed by formulation below 

TtNjiitW
N

j
jtyijWity ,,3,2,1;,,3,2,1;

1
 


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it

X
it

βX  (9) 
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3.  Results and Discussions 

3.1.  Descriptive Analysis of Poverty Rate 

Figure 1 displays the poverty rate in five districts over 8 years old (2010-2017). Overall, the poverty 

rate for all locations decrease significantly from 2010 to 2017. Polewali Mandar was the highest 

percentage of poverty rate in 2010 and 2017, whilst the other categories such as Majene, Mamasa, 

Mamuju and North Mamuju each represented about 18%, 16%, 8% and 6% respectively. However, the 

percentage of poverty rate in North Mamuju was the lowest for all over year and the second was 

Mamuju. These locations had characteristically the same poverty rate for all years. 

 

Figure 1. Poverty Rate in West Sulawesi for year 2010-2017 

3.2.  Spatial Autocorrelation Test  

After creating weighted matrix, the spatial autocorrelation test and spatial dependency test need to be 

analyzed to allow for spatial interpolation and Morans’I is commonly used statistic to measure spatial 

autocorrelation which is identified by a correlation in neighboring locations in space. Spatial 

regression model will be the main priority model to analyze this case when spatial auto-correlation test 

is significant based on Moran’s I statistics. 

Table 1. Spatial Autocorrelation and Dependency Test 

Moran I statistic standard deviate = 6.932, p-value < 2.2e-16  

Moran I statistic   Expectation   Variance  

0.218276163        -0.00739271   0.00237284  

Lagrange multiplier diagnostics for spatial dependence  

LMerr = 16.21, d lf = 1, p-value = 1.9234e-04  

LMlag = 28.36, df = 1, p-value = 1.5832e-06  

Robust Lagrange multiplier diagnostics for spatial dependence  

RLMerr = 0,56121290, df = 1,p-value = 0,0672  

RLMlag = 7.9210,df = 1, p-value = 0,000561 
 

In general, table 1 shows data that the value of Moran I test statistic is 0.2183. This value defines that 

a positive autocorrelation occurs in this poverty issues. Furthermore, it can be seen that p-value or 

calculated probability of Morans’ I is 2.2e-16 which indicates that value (0.05) is greater than p-

value so we tend to reject the null hypothesis. Consequently, there is a positive spatial autocorrelation 
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which means that one location is similar to other nearby locations. In a different way Moran’s I test 

statistics can be explained as the correlation between poverty, variables, and the spatial lag of poverty 

rate. To determine it, we need to calculate the average of poverty rate value for the neighboring 

polygons. After identifying the spatial correlation, the next step is how to interpret the spatial 

dependence. Based on Table 1, it highlights that the traditional model using OLS is not appropriate 

because Lagrange multiplier shows all spatial lag and spatial error dependence significantly exist. Also, 

Robust LM test implies that the best model for poverty rate may be SAR model due to its p-value 

criteria. P-value for Robust LM lag is small than another one. Next, we have to consider AC and LR 

test as comparison. 

3.3.  Parameter Estimation of OLS, SAR, SEM and SDM   

  Table 2. Parameter Estimation by Using OLS, SAR, SEM and SDM 

Significant 
Variable OLS SAR SEM SDM 

Intercept 12.0671 

(0.0000321) 

5.9211 

(0.000561) 

8.9004 

(0.00199) 

9.7882 

(0.000612) 

X1 0.03271 

(0.005021) 

   

X2 -0.7981 

(0.02257) 

-0.2542 

(0.001243) 

-0.3367 

(0.00545) 

-0.4912 

(0.006913) 

X3     

X4 0.0783 

(0.000062) 

0.00239 

(0.0239) 

0.00716 

(0.00942) 

0.00862 

(0.00967) 

X5 -0.2153 

(0.0034) 

-0.0178 

(0.000129) 

-0.1341 

(0.000412) 

-0.1782 

(0.0000937) 

X6 0.3412 

(0.04018) 

   

Lagged log y(  )  0.3217 

(0.00002221) 

 0.4918 

(0.0007215) 

Lagged error  y(  )   0.7206 

(0.00000882) 

 

Lag X1    -0.048(0.021) 

Lag X2    0.0721(0.039) 

Lag X3    -0.0635(0.0426) 

AIC 78.34 56.31 59.34 62.05 

LR Test    42.90 (0.0336) 

N 5 5 5 5 

RLM   7.921 

(0.000561) 

0.5612 

(0.0672) 

 

Overview, table 2 describes that the best model for poverty rate in West Sulawesi is spatial lag model 

(SAR) which has the smallest AIC (56.31) compared to OLS, SEM and SDM which have AIC 78.34, 

59.34, and 62.05 respectively. Moreover, OLS and spatial lag model will be the best choice model 

because of the likelihood ratio test from the above table. It represents value to reduce the spatial error 

model because this model differs from the spatial durbin model. Nonetheless, based on the previous 

analysis, OLS is not appropriate based on LM test so we can finally conclude that the best model for 

poverty rate is SAR model. On the other side, the percentage of regional budget (X2), the percentage 

of open unemployment rate (X4) and the percentage of income (X5) have significantly influences to 

the percentage of the poverty rate with looking at the p-value (0.001243, 0.0239, and 0,000129). On 

contrary, the percentage of literacy rate, labor force participation rate and drinking-water sources is not 
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significant, suggesting that we these factors will not have an impact on the poverty rate. Regional 

budget and income affect negatively to the poverty rate while open unemployment rate has a positive 

impact to this issue. It means that increased regional budget and income in neighboring locations have 

a negative impact on poverty rate. In another interpretation, we can see that the lag model on the 

partial lag effect is significant, which is 0,3217 with p-value 0.00002221. It means that average 100 

percent increased in poverty rate in a location will result 32.17 percentage to increase in poverty rate 

in a neighboring location. The spatial lag model for poverty rate can be formulated as follow: 

8,,3,2,1;5,4,3,2,1,

921.5 ;
5

1
32170178.000239,02542,0-1 321



 





tji

ity iti
j

jt
y

ij
WXXX 

 (10) 

3.4.  Assumption Check  

The next step is to meet the requirement of assumptions which are normality and homoscedasticity test. 

The errors are normally distributed on the large sample and the same errors variance is homoscedastic. 

Tabel 3. Normality and Homoscedasticity Test 

KS= 0.07802, p-value = 0.8562 alternative hypothesis: two-

sided for SAR  

model 

Studentized Breusch-Pagan test BP =6.087, df = 5, p-value 

=0.3288 for  

SAR model  

Durbin-Watson statistic=2.25382617 for SAR (dl= 1.562, 

du=1.978)  

For comparison DW = 1.893, p-value = 0.03762 for OLS  

(dl= 1.587 , du =1.922)  

 
Table 3 displays that the formed model has fulfilled the normality assumption based on the p-value of 

Kolmogorov-Smirnov (KS), 0.8562. This value leads to accept the null hypothesis (p-value> ) so the 

error term follow normal distribution while Studentized Breusch-Pagan Test gives information that the 

error variance is constant. It can be seen from the BP p-value which is greater than   value (0.05). 

this value also indicates to accept the null hypothesis.  

 

 

 

 

 

 

 

 

Figure 2. The Spread of Poverty Rate in West Sulawesi 
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4.  Conclusions 

Modelling the poverty rate by using several explanatory variables compared to traditional and spatial 

regression model (OLS, SAR, SEM and SDM) can be concluded that SAR model is the best model to see 

the influence of these variables to dependent variable. The percentage of the poverty rate is significantly 

influenced by the percentage of regional budget (X2), open unemployment rate (X4) and income (X5). 
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