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Abstract: The aim of this paper is to discuss the dynamic system of SIR model with climate 

factors for transmission characteristics of dengue fever in closed population. Human 

population is divided into three types, which are susceptible population, infected population, 

and recovered population, while mosquito population is divided into two kinds that are 

susceptible population and infected population contaminated by dengue fever virus. Five 

nonlinear differential equations are analyzed to obtain the equilibrium of the system and the 

basic reproduction number
0R . Next, the stability of the equilibrium of the system is dissected 

with three theorems using lyapunov. The results will be in the form of the disease-free 

equilibrium, the endemic equilibrium, and the basic reproduction number. The basic 

reproduction number
0R  is influenced by climate factors. If 0 1R  , the disease-free equilibrium 

will be asymptotically stable, whereas if 0 1R  , the endemic equilibrium will become 

asymptotically stable instead. Based on the results, the dengue fever transmission is affected 

greatly by the climate of a region.  

1.  Introduction 

Infectious diseases were estimated to vanish along with the development of medical research for 

vaccines, antibiotics, and life quality enhancement in the middle of 20th century. However, in fact, in 

the beginning of 21st century, infectious diseases still caused sorrow in the developing countries. 

Malaria, jaundice, AIDS, and Ebola are some of the culprits. Among all of those diseases, one of the 

easily transferred diseases is dengue fever. Dengue fever spread in the Southeast Asia and all over the 

world, particularly in the tropical climate countries [1,2] 

Some articles have discussed the dengue fever transmission model, SIR model, and looked for the 

disease-free equilibrium and the three endemic equilibriums to reduce the sufferers of dengue fever 

[4], modelling dengue fever by doing detection and prediction of dengue fever in Semarang [3], 

simulating dengue fever transmission in Selangor (Malaysia) [5], modelling dengue fever transmission 

by paying attention on the parameter of the mobility of citizens between two cities [7,8,9]. In this 

article, the mathematics modelling for dengue fever transmission by including climate factor as an 

influential parameter toward model, disease-free equilibrium and endemic equilibrium analyzed by 

using Lyapunov function following steps [6,13] that discovered the global equilibrium for SIR and 

SEIR mathematics model in dengue fever transmission. 

mailto:wnalafkar93@gmail.com
http://creativecommons.org/licenses/by/3.0
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2.  Formulation Of Sir Model With Climate Factors 

Human population is divided into three classes, Susceptible, Infected, and Recovery (Immune), while 

mosquito population is divided into two classes - Susceptible and Infected. At time t, we denote the 

susceptible humans for dengue fever, the infectious humans, the recovered humans in the particular 

range of time, susceptible mosquitos for dengue fever, and the infectious mosquitos as HS , HI , HR , VS

, and VI  respectively. No immune class exists for mosquitos because the infected period ends when 

the mosquitos die. H H H HN S I R    and 
V V V

V

A
N S I


    are the sum of human population and 

vector at time t. 
H  is birth and death rate for humans and V  is for mosquitos. 

The alteration in each groups of humans and mosquitos with climate factor 𝛼 can be interpreted 

into Figure 1 as follows: 

 

Figure 1.  Scheme of human population and vector for SIR model. 
 

Scheme of human population and vector in Figure 1 can be shown into mathematics models that 

form nonlinear differential equations as seen in equation (1). From those models, the disease-free 

equilibrium and the endemic equilibrium will be obtained by using Lyapunov function.  
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Since
V V V

V

A
N S I


   , equation (1) can be simplified as that in equation (2) 
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All of the parameters and the variables of the models are non-negative. They are clearly shown in 

the system (2), the non-negatif octant 
5R
 is positively invariant. Related to the system (2), we can 

obtain the following theorems.  
 

Theorem 1. Let  ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0H H H V VS t I t R t S t I t      be the solution of the system (2) with the 

initial condition 0 0 0 0 0( , , , , )H H H V VS I R S I and set D 

  5

1 2, ( ), ( ), , , ,H H H V V H

V

A
D S I t R t S I R F N F




 
    
 

 (3) 

for model (2), D  is a positively invariant set covering all of the solutions in 
5R . 

Proof. Consider the function below be the future Lyapunov function: 

 1 2( ) ( ), ( ) ( , )H H H V VF t F t F t S I R S I      

Next, ( )F t  will be derived according to time  t  

  ' ' ' ' '
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        ,H H H H H V V VH
N S I R A S I         

     1 2,H H H VN F A F      

Therefore, we get 
'

1 1
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2 21

( ) 0

( ) 0

H H H

V

F t N F

F t A F

 



   
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  (4) 

From equation (4), '( ) 0F t  indicating D is a positively invariant set. By solving equation (4), we get  

1 2 1 20 ( ( ), ( )) (0) , (0) VH tt

H
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A
F t F t N F e F e
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where 1(0)F
 and 2 (0)F

are the values of 1( )F t
 and 2 ( )F t

.  

From equation (4), '( ) 0F t  indicating D is a positively invariant set. By solving equation (4), we 

get  

1 2 1 20 ( ( ), ( )) (0) , (0) VH tt

H

V

A
F t F t N F e F e





 
    

 
 

where 1(0)F
 and 2 (0)F

are the values of 1( )F t
 and 2 ( )F t

.  
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From 1 2,0 ( ( ), ( )) ,H

V

A
t F t F t N



 
    

 
, we can conclude that D is a positively invariant set. This  

theorem guarantees that in a place, where in the beginning no virus bearer of dengue fever exists, turns 

into a contaminated place after the susceptible population, the not infected yet population ( )HS , the 

infected population ( )HI , and the recovered population ( )HR  were found. 

3.  Sir Model Stability Analysis 

By applying Diekhmann and Heesterbeek method [10, 11], Basic Reproduction can be obtained from  

system (2) 
2

0

( ( ) )

( )

H V H V

V V H H

A b b
R

N

      

  

  
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 (5) 

System (2) has two equilibriums:  0 1R   of which the only equilibrium is the disease-free 

equilibrium 
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System (2) always has a disease-free equilibrium 
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that shows the no dengue fever situation. 

 

Teorema 2. If 0 1R  , the disease-free equilibrium * * * * * *( , , , , ) ,0,0, ,0H H H V H H
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A
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asymptotically stable in D with assumptions 
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Proof. Consider the function below be the candidate of Lyapunov function 
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Function (8) is derived to time  t , so 
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The result is '( ) 0G t  . By using Lasalle’s Extension to Lyapunov’s method [13], the compact set 

for each solution is in the largest invariant set with
*
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*

V VS S and 0HR  is singleton  *P . 

However, it can be concluded that the disease-free equilibrium, *P , is asymptotically stable in D 

which becomes the proof of the theorem. 

4.  The Stability of Endemic Equilibrium 

System (2) owns some endemic equilibriums **K  that indicate the existence of dengue fever sufferer.  
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Function (14) is derived according to time  t , so we can get  
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 (15) 

By using assumption 12, equation (15) becomes 
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 (16) 

Condition (16) guarantees '( ) 0W t   for all  , , , ,H H H V VS I R S I D  and '( ) 0W t   if and only if  

** ** ** **, , ,H H H H H H V VS S I I R R S S    and **

V VI I . It makes point **P  becoming the only positively invariant set 

in system (2) that fully exists in   ** ** ** ** **, , , , , , , , ,H H H V V H H H H H H V V V VL S I R S I S S I I R R S S I I       and based on 

the asymptotically stable theorem [12], the endemic equilibrium **P  satisfies the theorem in D. From 

this fact, Theorem 3 has  proven. 

5.  Conclusion 

There are three theorems obtained in this article about the existence of dengue fever transmission, the 

disease-free status, and the endemic status of dengue fever transmission. The stability analysis of the 

disease-free equilibrium and the endemic equilibrium is undertaken by using lyapunov function. If 

0 1R  , the disease-free equilibrium is asymptotically stable, then the disease disappears from the 

population means that no one suffers from dengue fever. Meanwhile, if 0 1R  , the endemic 

equilibrium becomes asymptotically stable, which means the infected human will contaminate the 

disease to at least one individual in the population. 
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