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Abstract. We present a brief overview some fundamental results on the intuitionistic fuzzy 

topological spaces, and give some introductory results about fuzzy open set, fuzzy closed set, 

fuzzy neighborhood, fuzzy interior set, fuzzy continuity, fuzzy compactness and fuzzy 

connectedness in these spaces. 
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1. Introduction 

The theory of fuzzy sets proposed by Zadeh [1] in 1965, has shown successful applications in various 

fields. After the pioneering work of Zadeh, some researchers began to study both the theory and its 

applications. Chang [2] defined fuzzy topology by utilizing the definition of topology in the classical 

sets. Then [3] and [4] introduced fuzzy graphs and fuzzy groups. Furthermore, several other researchers 

continue to develop the theoretical aspects of the fuzzy set [6 ][7][8][9][10][11]. 

In the fuzzy set theory, the membership degree of an element is a value at [0, 1]. However, it may 

not always be true that the nonmembership degree of an element in the fuzzy set is equal to 1 minus the 

membership degree because there may be some degree of hesitation in determining the membership 

degree. Therefore, a generalization of the fuzzy sets was introduced by Atanassov [12], [13], known as 

intuitionistic fuzzy sets. Some applications of the Atanassov’s concept have been successfully 

implemented, such as in the decision making, medical field, pattern recognition, and so on [14].  

An important problem in intuitionistic fuzzy sets is to obtain an appropriate concept of intuitionistic 

fuzzy topological spaces. The problem has been studied by Coker [15]. He has defined the notion of 

intuitionistic fuzzy topological spaces refer to Chang's topology concept. The concept of (r,s)-connected 

fuzzy sets in intuitionistic fuzzy topological spaces was introduced [16] and investigated some properties 

of them. Then [17] presented the notion of intuitionistic fuzzy points and fuzzy neighborhoods, and [18] 

studied some types of fuzzy connectedness in Coker’s intuitionistic fuzzy topological spaces concept. 

Park [19] introduced the intuitionistic fuzzy metric spaces concept. Recently, [20] investigated the 

concept of intuitionistic I-fuzzy quasicoincident neighborhood systems of intuitionistic fuzzy points. 

They investigated the relation between the category of intuitionistic I-fuzzy quasicoincident 

neighborhood spaces and the category of intuitionistic I-fuzzy topological spaces, and construct the 

concept of generated intuitionistic I-fuzzy topology by using fuzzifying topologies. The main purpose 

of this paper is to overview of the concepts of topology in intuitionistic fuzzy sets, such as intuitionistic 

fuzzy open set, intuitionistic fuzzy closed set, intuitionistic fuzzy neighborhood, intuitionistic fuzzy 
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interior set, intuitionistic fuzzy continuity, intuitionistic fuzzy compactness, and intuitionistic fuzzy 

connectedness. 

2. Brief introduction of intuitionistic fuzzy set 

Definition 2.1. 

Let U be a nonempty fixed set. An intuitionistic fuzzy set (IFS in short) A, written as Â , in U is a set 

having the form  
ˆ {( , ( ), ( ))| }A AA x x x x U    

where the value of the functions ˆ : [0,1]
A

U   and ˆ : [0,1]
A

U   define the membership degree and 

non-membership degree of each element x U  to the set Â , respectively, and x U  , we have 

ˆ ˆ0 ( ) ( ) 1
A A

x x     

The amount ˆ ˆ ˆ( ) 1 ( ( ) ( ))
A A A

x x x      is called the hesitation part, which may cater to either 

membership value or nonmembership value or both. For the sake simplicity, we shall use the symbol 

ˆ ˆ
ˆ ( , , )

A A
A x    for the IFS ˆ ˆ

ˆ {( , ( ), ( ))| }
A A

A x x x x U    

Example 2.2. 

Let {( , ( )) | }AA x x x U  be a fuzzy set on a nonempty set U. We can denote the fuzzy set A as

{( , ( ),1 ( )) | }A AA x x x x U    . It’s obviously that every fuzzy set A on U is an IFS. 

Definition 2.2. 

Let ˆ ˆ
ˆ ( , , )

A A
A x   and ˆ ˆ

ˆ ( , , )
B B

B x    be two IFSs in nonempty set U, then: 

1. ˆ ˆA B  iff ˆ B̂A
   and ˆ B̂A

    x U   

2. ˆ ˆA B  iff ˆ ˆA B  and ˆ ˆA B  

3. ˆ ˆ
ˆ ( , , )

A A
A x    

4. ˆ ˆA B  = ˆ ˆ ˆ ˆ( ,max( , )),min( , ))
B BA A

x     . 

5. ˆ ˆA B  = ˆ ˆ ˆ ˆ( ,min( , )),max( , ))
B BA A

x     … 

6. ˆ[]A  = ˆ ˆ( , ,1 )
A A

x    

7. Â = ˆ ˆ( ,1 , )
A A

x    

Coker [15] generalized the operations of intersection and union in Definition 2.2 to any collections of 

IFSs as follows 

Definition 2.3. 

Let ˆ{ | }iA i J  be an arbitrary collections of IFS in U, then 

1. ˆ
i

i

A = ˆ ˆ( ,max ( ),min ( ))
i i

i iA A
x    

2. ˆ
i

i

A = ˆ ˆ( ,min ( ),max ( ))
i i

i iA A
x    

Definition 2.4. 

Let 1  and 0  be IFSs in U, we define as 1 ={( ,1,0) | }x x U .and 0 ={( ,0,1) | }x x U . 

Corollary 2.5. 

Let Â , B̂ , Ĉ and D̂  be IFSs in U, then:  

1. ˆ ˆA B  and ˆ ˆC D  then ˆ ˆA C  ˆ ˆB D  and ˆ ˆA C  ˆ ˆB D  

2. ˆ ˆA B  and ˆ ˆA C then ˆ ˆˆA B C   

3. ˆ ˆA C  and ˆB̂ C  then ˆ ˆˆA B C   

4. ˆ ˆA B  and ˆB̂ C  then ˆ ˆA C  



ICSMTR 2019
Journal of Physics: Conference Series 1752 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1752/1/012005

3

 
 
 
 
 
 

5. ˆ ˆA B = ˆ ˆA B  

6. ˆ ˆA B = ˆ ˆA B  

7. ˆ ˆA B  then ˆ ˆA B  

8. Â  = Â  

9. 0  = 1  and 1  = 0  

Proof. 

We will only prove part 6, the others are obviously. 

6. Let ˆ ˆ
ˆ ( , , )

A A
A x   , ˆ ˆ

ˆ ( , , )
B B

B x   , then ˆ ˆA B  = ˆ ˆ ˆ ˆ( ,min( , )),max( , ))
B BA A

x     , so we have 

ˆ ˆA B = ˆ ˆ ˆ ˆ( ,max( , ),min( , ))
B BA A

x     .  

And 

ˆ ˆ
ˆ ( , , )

A A
A x   , ˆ ˆ

ˆ ( , , )
B B

B x   , so we have ˆ ˆA B  = ˆ ˆ ˆ ˆ( ,max( , ),min( , ))
B BA A

x      

Hence, ˆ ˆA B  = ˆ ˆA B   

Definition 2.6. 

Consider U and V two nonempty sets and given a function :f U V . 

(a). Let ˆ ˆ
ˆ ( , , )

B B
B y    be an IFS in V, the preimage of B̂  by f  denoted by 

1 ˆ( )f B
 is an IFS in U 

such that 
1 1 1

ˆ ˆ
ˆ( ) {( , ( )( ), ( )( )) | }

B B
f B x f x f x x U      

(b). Let ˆ ˆ
ˆ ( , , )

A A
A x    be an IFS in U, the image of Â  by f  denoted by ˆ( )f A is an IFS in V such 

that ˆ
ˆ( ) {( , ( )( ),(1 (1 ))( )) | }AA

f A y f y f y y V     , with 

1

1

ˆ
( )

ˆ
1

sup ( ) ; ( )
( )

0 ; ( )

A
x f y

A

x f y
f

f y

 












 


 
 

  and 

1

1

( )

1

inf ( ) ; ( )
(1 (1 ))( ))

1 ; ( )

A
x f y

A

x f y
f y

f y

 












 
   



 

Proposition 2.7. (The properties of images and preimages) 

Let :f U V  be a function, Â  and ˆ ( )iA i J  IFSs in U, B̂ and ˆ ( )kB k K  IFSs in V, with

ˆ ˆ
ˆ ( , , )

A A
A x   , ˆ ˆ

ˆ ( , , )
B B

B y   , ˆ ˆ
ˆ ( , , )

i i
i A A

A x   , and ˆ ˆ
ˆ ( , , )

k k
k B B

B y   , 

1. 
1 2

ˆ ˆA A  then 
1 2

ˆ ˆ( ) ( )f A f A  

2. 
1 2

ˆ ˆB B  then 1 1

1 2
ˆ ˆ( ) ( )f B f B   

3. 
1ˆ ˆ( ( ))A f f A ; if f  is an injective function then 

1ˆ ˆ( ( ))A f f A  

4. 
1 ˆ ˆ( ( ))f f B B  ; if f  is a surjective function then 

1ˆ ˆ( ( ))B f f B  

5. 1 1ˆ ˆ( ) ( )k k
k k

f B f B   

6. 1 1ˆ ˆ( ) ( )k k
k k

f B f B   

7. ˆ ˆ( ) ( )i i
i i

f A f A  

8. ˆ ˆ( ) ( )i i
i i

f A f A ; if f  is an injective function then ˆ ˆ( ) ( )i i
i i

f A f A  

9. 1(1 ) 1f   ;  
1(0 ) 0f    

10. (0 ) 0f   

11. If f  is a surjective function then (1 ) 1f   
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12. 1 1ˆ ˆ( ) ( )f B f B   

13. If f  is a surjective function then ˆ ˆ( ) ( )f A f A  

Proof. 

6. 1 ˆ( )k
k

f B  =  1

ˆ ˆ({( ,min ,max ) | })
k kB Bk k

f y y V    = 1 1

ˆ ˆ{( , (min ), (max )) | }
k kB Bk k

x f f x U    = 

1 1

ˆ ˆ{( ,min ( ),max ( )) | }
k kB Bk k

x f f x U     = 1 1ˆ ˆ( ) ( )
{( ,min( ),max( )) | }

k kf B f Bk k
x x U    = 1 ˆ( )k

k

f B  

9. 1(0 )f   = 
1({( ,0,1) | }f y y V  = 

1 1{( , (0), (1)) | }x f f x U   = {( ,0,1) | }x x U  = 0  

10. (0 )f  = {( , (0),(1 (1 1)) | }y f f y V   = {( ,0,1) | }y y V = 0  

11. (1 )f  = {( , (1),(1 (1 0)) | }y f f y V    = {( , (1),(1 (1)) | }y f f y V  , 

If f  is a surjective function then (1)f  = 1. So that, {( , (1),(1 (1)) | }y f f y V  = 

{( ,1,0) | }y y V = 1  

12. Since 1 ˆ( )f B  = 1 1

ˆ ˆ{( , ( ), ( )) | }
B B

x f f x U     and 
1 ˆ( )f B

 = 1 1

ˆ ˆ{( , ( ), ( )) | }
B B

x f f x U     = 

1 1

ˆ ˆ{( , ( ), ( )) | }
B B

x f f x U    then we obtain the required result. 

3. Intuitionistic fuzzy topological spaces 

Coker [15] constructed intuitionistic fuzzy topology or IFT for short concept by generalizing Chang’s 

fuzzy topology concept. 

Definition 3.1 

Let Â  be an IFS on a nonempty set U and   is a collection of Â , then   is said to be IFT for U if it 

satisfy the following axioms: 

(A1) 0 ,1   

(A2) If 1 2,O O   then 1 2O O    

(A3) If iO   for each i I  then iO   

The pair ( , )U   is said to be an intuitionistic fuzzy topological spaces (IFTS in short). Any member of 

  is called as a  -intuitionistic fuzzy open set or  -IFOS for short in U, and the complement of a  -

IFOS in an IFTS is called as  -intuitionistic fuzzy closed set or  -IFCS for short. 

Proposition 3.2  

If ( , )U   is an IFTS on U then several IFTSs on U can be constructed by following way: 

1. 0.1 {[] | }O O    

2. 0.2 { | }O O     

Proof. 

We shall only prove 1, and another is similar. 

(A1) 0.11 ( ,1,0) ( ,1,1 0)x x      and 0.10 ( ,0,1) ( ,0,1 0)x x      

(A2) Let 1 2 0.1,O O  , then we have 
1 11 ( , ,1 )O OO x     and 

2 22 ( , ,1 )O OO x    . So that 

1 2 1 21 2 ( ,min( , ),max(1 ,1 ))O O O OO O x         = 
1 2 1 2

( ,min( , ),1 min( , ))O O O Ox       0.1  

(A3) Let 0.1iO  then ( ,max ,min(1 ))
i ii O O

ii
O x     = ( ,max ,1 max( ))

i iO O
i i

x    0.1  

Definition 3.3. 

Let , (0,1)   be two fixed real numbers such that 1    and U is a nonempty set, x U . Then 

an IFS on U defined by 
( , ) (1 )( , ,1 )xp x x x     is called intuitionistic fuzzy point (IFP in short) of U, 

and x is called the support of 
( , )

xp   .  
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Let 
( , )

xp  
be an IFP of U, and ˆ ˆ

ˆ ( , , )
A A

A x    be an IFS in U, we have ( , )
ˆxp A    if 

Â
  and 

Â
   

Definition 3.4. 

Let B be a collection of an IFS on U. Then B is said to be base for an IFT on U, if it satisfies the  

following: 

1. 
( , )

xp U    B̂ B  ( , )
ˆxp B    

2. Let 
1 2

ˆ ˆ,B B   B and ( , ) 1 2
ˆ ˆxp B B    , then 

3B̂ B  ( , ) 3 1 2
ˆ ˆ ˆxp B B B      

Definition 3.3. 

Let ˆ ˆ
ˆ ( , , )

A A
A x    be an IFS in U and ( , )U   is an IFTS. We define intuitionistic fuzzy interior of Â  

and intuitionistic fuzzy closure of Â , denoted by ˆ( )i A and ˆ( )c A , receptively, as follows: 

ˆ ˆ( ) { | }i A O O and O A    and ˆ ˆ( ) { | }c A C C and A C    

Proposition 3.4. 

Let ˆ ˆ
ˆ ( , , )

A A
A x    be an IFS in U. Then ˆ ˆ( ) int( )c A A  and ˆ ˆ( ) ( )i A c A   

Proof. 

Let the collection ˆ ˆ{( , , ) | }
i iO O

x i J    be the collection of IFOSs contained in Â . Then we have 

ˆ ˆ
ˆ( ) {( , , )}

i iO O
i A x    = ˆ ˆ{( ,max ,min )}

i iO Oii
x    and hence ˆ ˆ

ˆ( ) {( ,min ,max )}
i iO Oi i

i A x   . 

Because of ˆ ˆ
ˆ ( , , )

A A
A x    and ˆ ˆ ˆ ˆ,

i iO A O A
i J        then ˆ ˆ{( , , )}

i iO O
x    is the collection of 

IFCS containing Â , i.e. ˆ ˆ
ˆ( ) ( ,min ,max )

i iO Oi i
c A x   . Hence ˆ ˆ( ) ( )c A i A . 

This is analogous to proof of ˆ ˆ( ) ( )i A c A  

Proposition 3.5. 

Let Â  and B̂  be IFSs in an IFTS ( , )U  . We have the following properties: 

1. ˆ ˆ( )i A A and ˆ ˆ( )A c A  

2. If ˆ ˆA B  then ˆ ˆ( ) ( )i A i B  and If ˆ ˆA B  then ˆ ˆ( ) ( )c A c B  

3. ˆ ˆ( ( )) ( )i i A i A  and ˆ ˆ( ( )) ( )c c A c A  

4. ˆ ˆˆ ˆ( ) ( ) ( )i A B i A i B    and ˆ ˆˆ ˆ( ) ( ) ( )c A B c A c B    

5. (1 ) 1i   and (0 ) 0c   

4. Intuitionistic fuzzy neighborhood and fuzzy continuity  
Definition 4.1. 

Let ( , )U   be an IFTS and 
( , )

xp    an IFP of ( , )U  . Then an intuitionistic fuzzy neighborhood (IFN in 

short) of the IFP 
( , )

xp    is an IFS Â  such that ( , )
ˆˆxp B A     with B̂  . 

Theorem 4.2. 

Let ( , )U   be an IFTS and Â  be an IFS of U. Then we have 

Â  is an  -IFOS iff Â  is an IFN of 
( , )

xp   , ( , )
ˆxp A    

Proof. 

( ) Let Â  is an  -IFOS, then Â  is an IFN ( , )
ˆxp A    
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( ) Suppose that Â  is an IFN ( , )
ˆxp A   . Then 

( , )

ˆ
xp

B
 

 ( -IFOS in U) ( , )
ˆˆxp B A    . So we 

have ( , ) ( , )
ˆ ˆ{ | }x xA p p A      

( , )
( , )

ˆˆ{ | }x

x

p
B p A

 
     Â . Because each 

( , )

ˆ
xp

B
 

 is an  -IFOS, then Â  

is an  -IFOS in U too. 

Definition 4.3. 

Let ( , )U   and ( , )V   be two IFTSs, and given a function :f U V . We say that f  is a fuzzy 

continuous function if and only if the preimage of each IFS in ( , )V   is an IFS in ( , )U  . 

The function f  will be denoted as fuzzy open function if and only if the image of each IFS in   is an 

IFS in  . 

Proposition 4.4. 

Given a function : ( , ) ( , )f U V  , then f  is a fuzzy continuous iff the preimage of every IFCS in   

is an IFCS in  . 

Proof. 

( ) Suppose that : ( , ) ( , )f U V   is a fuzzy continuous, and given IFS ˆ ˆ
ˆ ( , , )

B B
B y    in  , and 

IFS ˆ ˆ
ˆ ( , , )

B B
B y    is the complement of B̂  (so B̂  is an IFCS in  ). We have 

1 1 1 1

ˆ ˆ
ˆ ˆ( ) ( , ( ), ( )) ( )

B B
f B x f f f B       (proposisi…?), so by definition (4.3) 1 1ˆ ˆ( ) ( )f B f B     

( )  Let : ( , ) ( , )f U V   be a function and the preimage of each IFCS in   be an IFCS in  . 

Consider ˆ ˆ
ˆ ( , , )

B B
B y    is an IFS in  , then the complement of B̂ , i.e. ˆ ˆ

ˆ ( , , )
B B

B y   , is an  -

IFCS. 1 1 1 1

ˆ ˆ
ˆ ˆ( ) ( , ( ), ( )) ( )

B B
f B x f f f B      . Because : ( , ) ( , )f U V   is a function then 

1 : ( , ) ( , )f V U    is also a function, so that ˆ ˆ
ˆ ( , , )

B B
B y    is an IFCS in  . So 1 1ˆ ˆ( ) ( )f B f B   

is an IFCS in U so that 1 ˆ( )f B   . Hence f  is the fuzzy continuous.  

Proposition 4.5. 

The following are equivalent each other. 

1. : ( , ) ( , )f U V   is fuzzy continuous 

2. 1 1ˆ ˆ( ( )) ( ( ))f i B i f B   B̂ V   

3. 1 1ˆ ˆ( ( )) ( ( ))c f B f c B   B̂ V   

5. Intuitionistic fuzzy compactness and fuzzy c5-connectedness 

Definition 5.1. 

Let ( , )U   be an IFTS, we have 

1. If ˆ ˆ
ˆ {( , , ) | }

i i
i G G

G x i J    is a collection of  -IFOSs in U, then ˆ
iG  is called fuzzy open cover of 

U if it satisfies the condition ˆ 1iG   

A finite sub collection of a fuzzy open cover of U (it is also a fuzzy open cover of U) is called a finite 

sub cover. 

2. A collection ˆ ˆ{( , , ) | }
i iK K

x i J    of  -IFCS in U satisfies the finite intersection property or FIP 

for short if and only if every finite sub collection ˆ ˆ{( , , ) | 1,2,..., }
i iK K

x i n    of the collection satisfies 

the condition ˆ ˆ

1

{( , , ) | } 0
i i

n

K K
i

x i J 


   

Definition 5.2. 

Let ( , )U   be an IFTS, then it is called fuzzy compact if and only if every fuzzy open cover of U has a 

finite sub cover. 

Proposition 5.3. 
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An IFTS ( , )U   is a fuzzy compact if and only if the IFTS 
0.1( , )U   is fuzzy compact. 

Proof. 

( )  Let ( , )U  be a fuzzy compact and let ˆ{[] | }jG j K  be a fuzzy open cover of U in 
0.1( , )U  .  

Because of ˆ{[] | } 1j

j

G j K  , then we have max 1G  . By 1
j jG G   then min 1 max

j jG G  

= 1 – 1 = 0. So we have min 0
jG  . Hence ˆ 1j

j

G  . Because ( , )U   is fuzzy compact then 

1 2
ˆ ˆ ˆ, ,..., nG G G  

1

ˆ 1
n

i

i

G


  , so we obtain 
1

max( ) 1
i

n

G
i




  and 
1

min(1 ) 0
i

n

G
i




  . Hence, 
0.1( , )U   is fuzzy 

compact. 

( ) Let 
0.1( , )U   be fuzzy compact and let ˆ{ | }jG j K  be a fuzzy open cover of U in ( , )U  . Because 

of 
1

ˆ 1j

j

G


 , then max 1
jG   and min(1 ) 0

jG  . Because 0.1( , )U   is fuzzy compact, then 

1 2
ˆ ˆ ˆ, ,..., nG G G  

1

ˆ{[] } 1
n

i

i

G


  , so we obtain 
1

max( ) 1
i

n

G
i




  and 
1

min(1 ) 0
i

n

G
i




  . By 1
i iG G   , then 

11
1 max 1 min

i i

n n

G G
ii

 


   , so we have 
1

min 0
i

n

G
i




 . Hence 
1

ˆ 1
n

i

i

G


 , and therefore ( , )U   is fuzzy 

compact. 

[22] introduced fuzzy C5-connected concept, and [15] used the concept in IFS. 

Definition 5.4. 

Let ( , )U   be an IFTS. Then 

1. U is called fuzzy C5-disconnected if ˆ(IFOS and IFCS)G   ˆ 1G   and ˆ 0G   

2. U is called fuzzy C5-connected if U is not fuzzy C5-disconnected. 

Proposition 5.5. 

Let ( , )U   be an IFTS, then U is fuzzy C5-disconnected if and only if there exists a fuzzy continuous 

function : ( , ) ( , )D Df U I   with 0f   and 1f   

Corollary 5.6 

Let ( , )U   be an IFTS, then U is fuzzy C5-connected if and only if there does not exists fuzzy 

continuous function : ( , ) ( , )D Df U I   with 0f   and 1f   

Proposition 5.7. 

Let ( , )U   and ( , )V   be two IFTSs, and given a fuzzy continuous surjection :f U V . If ( , )U   is 

fuzzy C5-connected, then ( , )V   is fuzzy C5-connected too. 
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