## The Study of Vocational Higher Education Graduates Skills Which Requires in The Industry by Anas Arfandi

Submission date: 10-Jan-2020 04:31PM (UTC-0800)
Submission ID: 1240817323
File name: 2018_Anas-Onesimus_American_Science_Letter.pdf (225.77K)
Word count: 2862
Character count: 16019

# The Study of Vocational Higher Education Graduates Skills Which Requires in The Industry 

Anas Arfandi* and Onesimus Sampebua<br>19<br>Department of Civil Engineering Education, Universitas Negeri Makassar, JI. Dg. Tata Kampus, UNM Parang Tambung Makassar


#### Abstract

The Study of Vocational Higher Education Graduates Skills Required in the Industry aims to elaborate the occupation of the vocational higher education of civil engineering graduates in industry; and describe the technical an 8 mployability skills of the graduates' demands in the construction industry. This study is a quantitative research. The subjects were all of VHE of civil engineering Department in Makassar city who had graduated the last 5 years. Samples were taken using purposive sampling amount 32 people. Research variable were occupation of the graduate, and technical and employability skills of the graduates. T22 data collected using questionnaires and structured interviews. Analysis data used descriptive analysis. The results showed that: (1) the occupation of the D3 civil engineering graduates in industry are: field officer, quantity, quality control, administrator, surveyor, and technician; (2) The industry requires technical skills of the D3 Civil Engineering graduates including: understanding of the field of employment, mastery of the technique of digital drawing, understanding of the cost analysis, document management, technical understanding of applying and supervision, making work report, correcting errors, operating and maintaining equipment, and evaluating the work; and (3) The industry dem 8 ds employability skills including the ability in: communication, working in teams, problem solving, self-management, planning and management, information technology and communication, lifelong learning, and initiative and enterprise.


Keywords: Vocational Higher Education, Civil Engineering, technical skills, employability skills

## 1. INTRODUCTION

Various stakeholders such as the world of work, students, schools and communities have a different perspective on the notion of vocational education, place of learning, and learning process in vocational education ${ }^{1}$. Skills and competencies outcomes are still not clearly underst 14 widely by all stakeholders ${ }^{2}$. This difference raises the gap between learning at school and the workplace that needs to be given a bridge to synchron 11 the competence ${ }^{3}$.
${ }^{4}$ stated that the competency is the ability to carry out a complex task that requires the in 7 gration of knowledge, skills and attitudes. ${ }^{5}$ argue that the graduates of 11 engineering major rated a top cluster of competencies (teamwork, communication, data analysis, and pro 13 n solving) significantly higher than a bottom cluster (contemporary issues, design of experit 2 nts , and understanding the impact of one's work). Graduates across engineering discipline share a pattern of 2 portance for professional practice among the Accreditation Board for Engineering and Technology
(28ET) competencies that statistically significant, consistent across demographic variable, and stable over time. This pattern can inform faculty decisions about curriculum emphasis within and across engineering disciplines.

The curriculum which designed without need assessment in the workplace will impact to the mismatch competency of the graduates. Many graduates are not 4 sorbed in the workplace can be caused by the quality of teaching and learning process. 4 he relevance of vocational education is not only caused by the gap between the supply and demand but also can be caused by a lack of curriculum content 4 accordance with the demands of the workplace, the development of science and technology and economic development ${ }^{6}$.

Competencies of learners are declared in the curriculum. The curriculum of vocational higher education (VHE) of civil engineering department has been developed and could be revised based on the consideration of the needs and the growth in the world of
work. ${ }^{7}$ explain that at the Georgia Institute of Technology, the process of civil engineering undergraduate curriculum revision includes a variety input from the user especially the construction industry. The curriculum emphasizes the system of civil engineering, technical communication, sustainability, and the analysis and design of computer based. In addition, the curriculum revision also effort encourage learners to continuing study to master degree and use of distance learning technologies as a basis for learning.

Graduates of VHE of civil engineering department are supposed to have the ability in planning civil construction, structural drawing, calculation of budget plans, technical specifications, preparation of tender documents, as a laboratory staff, supervisors of construction services in civil Engineering in the construction of facilities and infrastructure, as well as the ability to build real estate. This gap supported the data from BPS which recorded a total number of unemployed nationally in February 2016 reached 7.02 million people or $5.50 \%$ of total labor force. Of that number, vocational school graduates have highest unemployed amount $9.84 \%$, followed diploma education at $7.22 \%$, Senior high school at $6.95 \%$, and $6.22 \%$ of university graduates ${ }^{8}$.

Therefore, this study aims to elaborate the occupation of the vocational higher education of civil engineering graduates in industry; and describe the technical and employability skills of the graduate demands in the construction industry.

## 2. RESEARCH METHOD

This study is a quantitative research. The population of the study was all of VHE of civil engineering Department in Makassar city who had graduated the last 5 years. The sample was taken using purposive random sampling and conducted 32 graduates as respondent. The variable of the research were an occupation of the graduates, and technical and employability skills of the graduates. The data was collected using questionnaires and structured interviews during February to May 2016. The collected data was analyzed used descriptive qualitative and deep discussion.

## 3. RESULT

Graduates of VHE of Civil Engineering Department has employee in various areas of work. Their job generally in the contractor company (category large, medium, and small) with a total of $35 \%$; in the developer company (category large and medium) with a total of $20 \%$; in the consultant company (category large) about $10 \%$; civil servants $10 \%$; other works (financing, further studies, and marketing) about $10 \%$, as an entrepreneur about $5 \%$, and unemployed about $10 \%$. The contractor, the consultant, and the developer company area include to construction industry and totally graduates who work on it amount 65\%.

Graduates who work in the construction industry was purposed to describe more about their occupation. It will elaborate the occupation, the duty and the competency in the workplace as they work now. For more clearly, it describes at Table 1.

Table 1. Occupation Frame of the Civil Engineering Graduates

| No | Occupati on | Duty | Competency |
| :---: | :---: | :---: | :---: |
| 1 | Field Officer | Monitoring the worker activities in the project <br> Managing the workers duty in the project Managing the needs of the tools and materials in the project <br> Managing the working time of the project Make a daily report Make a monthly report | Ability to read and understand the shop drawing Ability in the construction management Ability to analyze and report the activity and the result of the project Ability to operate the technology tools based on standard operational procedure |
| 2 | Quantity | Count the needs of the tools and materials Count the realization of the tools and materials has used <br> Count the realization of the working project <br> Make a report | Ability to analyze and report the project data Ability to operate the technology tools based on standard operational procedure |
| 3 | Quality Control | Control the quality of the tools and materials Monitoring the quality of the project result Make a report | Ability to analyze and report the result of the project data <br> Ability to operate the technology tools based on standard operational procedure Ability to measure the quality standardize |
| 4 | Administ rator | Managing the pre- <br> qualification <br> document <br> Managing the tender document Make an implementation project report | Ability to read, understand, and organize the document according to norm, standard, guide, and manual set |


connected to construction industry but also connected to others workplace. To prepare students the competen 10 ; that demand by industry, Little \& Colleagues ${ }^{15}$ argue that employability can be enhanced by work-related activities 24 ch do not include doing a job of work. ${ }^{16}$ proposes future graduates' employabilit 5 which indicated in generic skills. His conceptual model called Graduate Employability Model (GEM) as a framework for policy makers and higher education practitioners to generate a more stringent quantitative and summative quotient of the employability skills.

In order to prepare the employability skills of the 9 idents, ${ }^{17}$ recommend an active learning or 'hands on' is the most effective means of developing 9 e employability skills given their characteristics. The design of an overall active teaching and learning and assessment strategy for effective employability skil 1 development with adult learning principles: 1) Responsible learning, where learners take responsibility for their learning; 2) Experiential learning, where learners learn from experience; 3) Cooperative learning, where learners learn with and through others; and 4) Reflective learning, where learners reflect on and learn from their experience.

## 21 CONCLUSION

Based on the findings and discussion, the conclusion of the research: 1) Occupation of VHE of civil engineering department graduate as: field officer, quantity, quality control, administrator, surveyor, and technician. Each occupation elaborated the duty and the competency that graduates must have in order to involve in this occupation; 2) The industry demands technical skill such Understand works subject, Drawing with computer base, Analyze budget, Document management, Applying/ Monitoring, Reporting, Revised mistake, Used and maintenance the tools, and Works evaluation; and 3) The employability skills that demand at the industry includi 20 the ability in: communication, working in teams, problem solving, self-management, planning and management, information technology and
communication, lifelong learning, and initiative and enterprise.

## Reference:

1. Aarkrog V . Learning in the workplace and the significance of school-based education: a study of learning in a Danish vocational education and training programme. Int J lifelong Educ. 2005;24(2):137-47.
2. Gulikers JTM, Baartman LKJ, Biemans HJA. Facilitating evaluations of innovative, competence-based assessments: Creating understanding and involving multiple stakeholders. Eval Program Plann. 2010;33(2):120-7.
3. Iannelli C, Raffe D. Vocational upper-secondary education and the transition from school. Eur Sociol Rev. 2007;23(1) 49-63.
4. Kilbrink $N$, Bjurulf V , Olin-Scheller C , Tengberg M. Experiences of educational content in Swed ish technical vocational education: Exa mples from the energy and industry programmes. Int J Train Res. 2014;12(2):122-31.
5. Hordern J. How is vocational knowle dge recontextualised? J Vocat Educ Train. 2014;66[1):22-38.
6. Illeris $K$. Transfer of learning in the learning society: How can the barriers between different learning spaces be surmounted, and how can the gap between learning inside and outside schools be bridged? Int J Lifelong Educ. 2009;28(2):137-48.
7. Jordan A, Carlile O, Stack A. Approaches to learning: a guide for teachers: a guide for educators. McGraw-Hill Education (UK); 2008.
8. Passow HJ. Which ABET competencies do engineering graduates find most important in their work? J Eng Educ. 2012;101(1):95-118.
9. Arfandi A. RELEVANSI KOMPETENSI LULUSAN DIPLOMA TIGA TEKNIK SIPIL DI DUNIA KERIA. Pendidik Vokasi. 2013;3(3):283-92.
10. Meyer MD, Jacobs L. A civil engineering curriculum for the future: The Georgia Tech case. J Prof Issues Eng Educ Pract. 2000;126(2):74-8.
11. BPS BPS. Keadaan ketenagaakerjaan Februari 2016. BPS. 2016.
12. Birkett WP. Competency based standards for professional accountants in Australia and New Zealand: Discussion Pa per. Australian Society of Certified Practising Accountants, Institute of Chartered Accountants in Australia and the New Zealand Society of Accounta nts; 1993.
13. Little B, Colleagues E. Employability and work-based learning. Higher Education Academy York; 2006.
14. Amekudzi $A A$, Li L, Meyer M. Cultivating research and information skills in civil engineering undergraduate students. J Prof lssues Eng Educ Pract. 2009;136(1):24-9.
15. Knight P, Yorke M. Assessment, learning and employability. McGraw-Hill Education (UK); 2003.
16. Kneale P. Teaching and learning for employability. A Handb Teach Learn High Educ. 2008;99.
17. Parmjit Singh, Roslind Xaviour Thambusamy, \& Adlan Ramly. No Title. Pertanika J Soc Sci Hum. 2014;22(3);845-60.
18. Cleary M, Flynn R, Thomasson S. Employability Skills: From Framework to Practice-An Introductory Guide for Trainers and Assessors. Adobe Digit Ed version. 2006;

Received: 20 May 2017. Accepted: 22 September 2017.

## The Study of Vocational Higher Education Graduates Skills Which Requires in The Industry

17. 

SIMILARITY INDEX

12\%
INTERNET SOURCES

6\%
PUBLICATIONS

12\%
STUDENT PAPERS

Submitted to University of Balamand
Student Paper
"Handbook of Vocational Education and
Training", Springer Science and Business Media
www.ugcascru.org
Internet Source
www.imvc.com.au
Internet Source

Submitted to Maastricht School of Management

## 23 <br> Submitted to School of Business and Management ITB

Submitted to Universiti Putra Malaysia
Student Paper

