PROCEEDING

2nd ICMSTEA
INTERNATIONAL CONFERENCE ON MATHEMATICS, SCIENCE, TECHNOLOGY, EDUCATION AND THEIR APPLICATIONS

"The Role of Mathematics, Sciences, Technology, Education towards ASEAN Economic Community and Global Challenges"

October 3rd - 4th, 2016
Makassar, South Sulawesi, Indonesia
PROCEEDING

ICMSTEA 2016 :
The Role of Mathematics, Sciences, Technology, and Education Towards ASEAN Economic Community and Global Challenges

Makassar, South Sulawesi, Indonesia
3rd – 4th October 2016

Fakultas Matematika dan Ilmu Pengetahuan Alam
Universitas Negeri Makassar
2016
WELCOME SPEECH

Forewords from the Chairman of Committee

Assalamu’alaykum wa Rahmatullahi wa Barakatuh

First of all, I wish to extend a warm welcome to fellow delegates from the various countries and regions. I realize that you are fully dedicated to the sessions that will follow but I do hope you will also take time to enjoy sparkling Makassar with its tropical setting, friendly people, and wonderful cuisine.

This 2nd International Conference on Mathematics, Science, Technology, Education, and Their Application 2016 is organized by the Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar to bring all experts and researches in these field sharing their important thoughts and findings. The conference will be held in two days from 3rd – 4th of October 2016 with two keynote speakers, seven invited speakers, and more than 80 parallel speakers from different backgrounds.

Let me take this opportunity, on behalf of the committee members, to express my gratitude and sincere thanks to the keynote, invited and all parallel speakers for spending their valuable time with us in this conference. I do hope that your time in Makassar will be valuable and memorable.

Finally, I would like to thank all steering and organizing committee for their hard work and dedication to the success of this conference. I would like also to apologize to all of you should you find any inconvenience during this event.

Thank you very much,

Wassalamu’alaykum Warahmatullahi Wa barakatuh

Chairman of Committee,

Dr. Drs. A. Mushawwir Tayeb, M.Kes.

The 2nd ICMSTEA Speech
By The Dean of Mathematics and Natural Sciences Faculty
Universitas Negeri Makassar

Your excellency Rector of Universitas Negeri Makassar
Honorable Vice Rectors and Dean of All Faculties
Honorable Keynote Speakers
Distinguished all invited speakers from outstanding universities
Distinguished all speakers and guests
All participants,
Ladies & Gentlemen,

Assalamu’alaykum Warahmatullahi Wabarakatu
My greetings for all of you. May peace and God’s blessing be upon us all. Alhamdulillah, all praises be to the Almighty God, Allah subhanahu wata’ala.

It is my pleasure to welcome you all to the opening of The 2nd International Conference on Mathematics, Science, Technology, Education & their Applications (2nd ICMSTEA). I am delighted to see that the Mathematics and Natural Science Faculty has again organized the second conference that capitalize on our strength and built on our commitment to promoting Mathematics, Science, Technology and Education.

I do hope that this conference would bring a great opportunity for all of us to strengthen our contribution to the advancement of our nation.

I would like to take this opportunity to thank the conference organizing committee for their diligent work. I would also like to thank participants, especially those of you coming from abroad, for joining us and sharing your valuable experiences. Should you find any inconveniences and shortcomings, please accept our sincere apologies.

Finally, let me wish you fruitful discussion and a very pleasant stay in Makassar.

Thank you,
Wassalamu’alaykum Warahmatullahi Wabarakatu

Dean of Faculty of Mathematics and Natural Sciences
Universitas Negeri Makassar

Prof. Dr. Abdul Rahman, M.Pd.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>i</td>
</tr>
<tr>
<td>Welcome Speech</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>Invited Speakers</td>
<td>1</td>
</tr>
<tr>
<td>Genetic Structure and Evolutionary History of a Diploid Hybrid Pine Pinus densata</td>
<td>1 – 8</td>
</tr>
<tr>
<td>Inferred from the Nucleotide Variation at Seven Gene Loci</td>
<td></td>
</tr>
<tr>
<td>Alfred Edward Szmidt</td>
<td></td>
</tr>
<tr>
<td>Biodiversity and Big Data In A Changing World: From Museum Specimens to Citizen Sciences</td>
<td>9 – 15</td>
</tr>
<tr>
<td>Valerio Sbordoni</td>
<td></td>
</tr>
<tr>
<td>Engaging Students with Tablet Technology in Science, Technology, and Mathematics Education</td>
<td>16 – 38</td>
</tr>
<tr>
<td>Birgit Loch</td>
<td></td>
</tr>
<tr>
<td>Assessment Within Elpsa Lesson Design</td>
<td>39 – 48</td>
</tr>
<tr>
<td>Sitti Maesuri Patahuddin</td>
<td></td>
</tr>
<tr>
<td>Richard Randriantoamanana</td>
<td></td>
</tr>
<tr>
<td>In Silico Study of L-specific dehalogenase from Rhizobial Species Strain RC1</td>
<td>59 – 68</td>
</tr>
<tr>
<td>Fahrul Zaman bin Huyop</td>
<td></td>
</tr>
<tr>
<td>Fostering Water Innovation: Securing the ASEAN Water Future</td>
<td>69 – 78</td>
</tr>
<tr>
<td>Mohd. Ekhwan Toriman</td>
<td></td>
</tr>
<tr>
<td>Basic Research (in Physics) for Development of Nation Innovation</td>
<td>79 – 86</td>
</tr>
<tr>
<td>Eko Hadi Sujiono</td>
<td></td>
</tr>
<tr>
<td>Parallel Speakers</td>
<td></td>
</tr>
<tr>
<td>The Influence Of Problem Based Learning Model Toward Motivation and Physics Learning Outcomes Of Students SMA Negeri 1 Parangloe Gowa Regency</td>
<td>87 – 95</td>
</tr>
<tr>
<td>Muhajirin, Sidin Ali & Pariabti Palloan</td>
<td></td>
</tr>
<tr>
<td>Analysis of Student’s Conceptual Understanding of Mathematics on Set at Class VII SMP Frater Palopo</td>
<td>96 – 102</td>
</tr>
<tr>
<td>Muhammad Ilyas & Fahrul Basir</td>
<td></td>
</tr>
</tbody>
</table>
Pah Characteristics In Sediment Around Makassar Coast Using GC-FID
Muhammad Syahrir, Nurul Hidayat Aprilita, Nuryono, & Netti Herawati
103 – 114

Perception of 21st Century Learners to The E-Books as A Learning Resources
Muhammad Takwin Machmud
115 – 122

The Group Of Understory Herbaceous Vegetation Stand At Tropical Lower Mountain Forest Of Mount Salak, West Java
Muhammad Wiharto, Cecep Kusmana, Lilik Budi Prasetyo, Tukirin Partomiharjo, Hamka L, & Abd. Muis
123 – 129

Antibacterial Compounds Characterization in Chloroform Extract Leaves of Tahiyayam Plant (Lantana Camara Liin.)
Muharram, St. Nurzulaiha, Nurrahmania, Iwan Dini, Pince Salempa, & Maryono
130 – 135

Effect of Mixture Inoculum of Lactic Acid Bacteria (LAB) and Mold Amylolytic In Various Concentration And Fermentation Time of Changing Protein And HCN Content Of Bitter Cassava Roots (Manihot aipi Phol.)
Nurhayani H. Muhiddin, Nur Arfa Yanti, & Hasanah
136 – 143

The Analysis of Total Cholesterol Levels in Mice (Mus musculus) MALES who were Given Extracts of Methanol Leaf Cemba (Acacia pennata)
Nurul Muhlishah, Irma Suryani Idris, Andi Mu’nis, & Ernawati
144 – 150

Plants in a Square: Explore Plants Description With QR Code Feature
Khalisha Azis, Sitti Saenab & Syamsiah
151 – 155

Exploring the Correlation between Metacognitive Skills and Retention of Students in Different Learning Strategies in Biology Classroom
Arsad Bahri
156 – 161

Physical Fitness For Futsal Referee Of Football Association In Thailand
Acting Sub L.t.Thaweesub Koeipakvaen
162 – 170

Histological study of the respiratory system of Sulawesi Medaka fish (Oryzias celebensis): as a candidate of animal model
Dwi Kesuma Sari, Irma Andriani, & Khusnul Yakin
171 – 176

Technological Innovation of Learning Mobile-Based Learning
Herlinah & Baso Habibi
177 – 184

Evaluation of Antimicrobial Activity and Phytochemical Screening of Chloroform Extract of Usnea sp.
Iwan Dini, Maryono, Nurul Utami, Sitti Hajar, & Ahmad Hadani
185 – 188

The effectiveness of Scientific-Inquiry Learning Model to Improve Scientific Thinking Skills of Grade X student of High School in Gowa Regency
Jusniar & Sumiati Side
189 – 194
Pedagogical Content Knowledge: Teacher’s Knowledge Of Students In Learning Mathematics On Limit Of Function Material
Ma’rufi, I Ketut Budayasa, & Dwi Juniati

Simulation Infiltration Rate of Water on Sand Media by Finite Difference Method
Masitah Osman, Nasrul Ihsan, & Muhammad Arsyad

The Influence Of Problem Based Learning Model Toward Motivation and Physics Learning Outcomes Of Students SMA Negeri 1 Parangloe Gowa Regency
Muhajirin, Sidin Ali & Pariabti Palloan

The Influence of Experiment Methods on Science Process Skill and Cognitive Learning Outcomes of the X Grade Students of MIA SMAN 1 Soppeng Riaja 2015/2016
A. Sri Sofializa, Muhammad Arsyad, & Muris

The Influence Of Problem Based Learning Model Toward Motivation and Physics Learning Outcomes Of Students SMA Negeri 1 Parangloe Gowa Regency
Muhajirin, Sidin Ali & Pariabti Palloan

The Development of Critical Thinking Inventory Instrument for Biology Department Students
Abd Muis, Adnan Gassing, Ismail Laumma & Nurjannah

Unleash Students’ Motivation with Blended Knowledge Transfer Instructional Model
Adnan, Sitti Saenab, & Andi Rahmat Saleh

The Development of Student’s Worksheet of Physics Based on Virtual Simulation and Its Influence on Physics Learning Outcomes of Students
Ahmad Swandi & Bunga Dara Amin

Teaching Material Development with Challenge Based Learning (CBL) Basis to Improve Critical Thinking Ability on Human Reproduction System Material of Class XI IPA 4 Students at MAN Pinrang
Andi Asmawati Azis, Jasruddin, & Reni

Implementation of Accreditation Policy and Quality of Public Primary School Education Service in South-Sulawesi
Andi Cudai Nur & Sumarlin Mus

Plants in A Square: Explore Plants Description with QR Code Feature
Khalisha Azis, Wiharto, Siti Saenab, & Syamsiah

Fostering Science Learning Quality in Frame of Ecosystem Topic through Lesson Study
Besse Aisyah, Nurfatima, Rina Kurnia, Andi Asmawati Aziz, & Andi Nurul Virninda Yusuf

Fractionation Ethyl Acetate Extract of Stem Bark Soursop (a. Muricata. Linn) Potential Anticancer
Pince Salempa, Muharam, & Iwan Dini
Entrepreneurship Education Development In Dealing Asean Economic Community
Mohammad Rakib

The Development of Basic Chemistry Courses Program Based Problem Solving to Improve Student’s Critical Thinking Skills
Ramlawati & Ratnawaty Mamin

Increase The Production and Quality of Biogas from Waste of Cattle Rumen Content Through The Addition of Molasses and Zeolite
Ramli, Satria Aly, & Hartono

Marica Goat’s Response To The Provision of Superior Feed
Rosdiana Ngitung

Students’ Mathematics Achievement and Its Relationship with Parents’ Education Level, and Socio-Economic Status In Turkey
Rusli

The Abstraction Ability in Constructing Relation Within Triangles By The Seventh Grade Students of Junior High School
Sitti Mutmaainna Hasma, Suwardi Annas, & Djadir

Water Content Influence to Electrical Properties From Soil Volcanic
Sulistiawaty

The Influence Of Using Destination Card Through Team Games Tournament (TGT) Type Of Cooperative Learning Toward Student’s XII Grade Achievement at SMA Negeri 01 Unggulan Kamanre, Luwu Regency
Ulva Nilawaty Sudarmadi

Applying SARAC Approach and The Effect in Learning Mathematics For Students Grade VIII
Usman Mulbar & Nasrullah

Analysis Von Bertalanffy Equation With Variation Coefficient
Usman Pagalay, Budiawan, & Anisyah

Results Increasing Student Learning Through The Use of Biology Learning Model Cooperative Think Pair Share (TPS) The Student Class XI IPA SMA Negeri 5 Makassar
Wiwik Wiji Astuti, Ismail & Musyafar

Characterization of crude chitinase produced by Trichoderma virens in solid state fermentation
Rachmawaty & Madihah
Exploring the Correlation between Metacognitive Skills and Retention of Students in Different Learning Strategies in Biology Classroom

Arsad Bahri

1) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar Jl. Daeng Tata Raya, Kampus UNM Parangtambing, Makassar, South Sulawesi, Indonesia

Email: arsad.bahri@unm.ac.id

Abstract. Metacognitive skills were believed to contribute on vary of cognitive activity of students, including the retention. This research was conducted during one semester in four different classes that were taught biology by using four different learning strategies: Problem-based Learning (PBL), Reading Questioning and Answering (RQA), PBL integrated with RQA (PBLRQA), and multi-strategy. This research explored the correlation between metacognitive skills with retention of students in the four different strategies, and compared the four regression lines whether or not they are parallel. The research results showed that the correlations between metacognitive skills and students’ retention were significant. The results of the analysis of variance related to the regression equation in the four different strategies were parallel and not coincide and the regression line of RQA strategy was at the highest position. It indicated that this strategy has the potency to empower metacognitive skills and simultaneously maintained the students’ retention. It would be important information for lecturers that they should empower the metacognitive skills through the appropriate learning strategies because it was believed could affected the students’ retention.

Keywords: metacognitive skills, retention, problem-based learning, reading questioning answering, regression line.

INTRODUCTION

Metacognition is awareness of one's thinking about the thinking process. Metacognition was thinking about thinking (Livingston, 1997; Flavell, 1999), knowledge of self-learning or about learn how to learn (McCormick, 2003, in Slavin, 2006). Metacognition was divided into three types of thinking that metacognitive knowledge, metacognitive skills, and metacognitive experience (Hacker, et al. 2009; Downing et al., 2009).

Metacognitive skills conceptualized as an interconnected set of competencies. Dawson (2008), Anderson & Krathwohl (2001) explained that these competencies used for learning and thinking, and skills required for active learning, critical thinking, problem solving, and reflective assessment. Four indicators of metacognitive skills were planning, monitoring, evaluating, and revising (Lee & Baylor, 2006). First, planning is an activity that is done carefully regulating the whole process of learning. Behavior plan consists of a set of learning objectives, sequence learning, learning strategies and expectations of the current study. Second, monitoring refers to moderate activity on learning progress. Monitoring activities are monitoring during learning activities. Thirdly, evaluating refers to the self-evaluation of learning process includes an assessment of learning activities progress. Fourth, revising refers to revise the learning process, which includes the plan modification of the previous goals, strategies, and other learning approaches. Livingston (1997) stated that a person's cognitive activities such as planning, monitoring, and evaluating the completion of a particular task were a metacognition.

Metacognition make students become self-regulated learners who can plan and organize their learning process. Livingston (1997) explained that metacognition played a role in learning success. Eggen & Kauchak (1996) suggested that the development of skills in students was a valuable educational purpose, since those skills could help them become self-regulated learners. Self-regulated learner was responsible for their own learning progress and adapted their learning strategies to achieve mastery learning (Anderson & Krathwohl,
Learners who skillfully in self-assessment would aware of their ability, to act more strategically, and better than those who were not skilled in self-assessment (Schraw & Dennison, 1994).

Several studies about the correlation between metacognition with achievement have been reported primarily associated with the implementation of specific instructional strategies. Coutinho (2007), Rahman (2010), Atunasikha (2010), Mustaqim et al. (2013), and Bahri and Corebima (2015) found that metacognitive skills contributed to the cognitive learning outcomes of students. Correspondingly, Zimmerman (1990) also found that the self-regulated learning has a strong relationship with achievement. Metacognitive skills also contributed to the students' motivation (Salili et al., 2001; Kuntjojo, 2012; Bags, et al., 2012; and Mustaqim, et al., 2013).

Theoretically metacognition has believed to have a correlation with student retention. Retention was the ability to remember the subject matter until a specified period was the same as the material being taught (Anderson & Krathwohl, 2001). Remembering is taking the necessary knowledge of long-term memory. According to Dahar (1991) related to the length of material retention lessons learned learners in memory. Retention is the amount of acquisition of learning outcomes that are still able to remember or reproduced by learners after a certain time in its memory. Koffka (1965) explained that memory process was the activity in the brain caused by environmental experience, when the process stops, and the effect is still lagging behind traces in the brain. Furthermore, Koffka (1965) stated that if one defines learning as a potential modification of behavior that comes from experience, each occurrence could be viewed as a learning experience. Metacognitive skills are believed to play an important role in cognitive activities include memory (Howard, 2004).

Previous research on the relationship between metacognition with retention on the application of biology learning strategies has not been widely reported. The use of appropriate learning strategies to empower students' metacognition, believed can simultaneously improve cognitive retention of students. The use of different biology learning strategies is possibility to show different correlations between students' metacognition with students' retention. Biology can be thought by variety of learning strategies, such as problem-based learning (PBL), Reading Answering and Questioning (RQA), the integration of PBL with RQA (PBLRQA), and traditional learning. Skaalvik & Skaalvik (2010); Baran & Maskan (2011); and Kristiani et al. (2015); Muhiddin (2016) reported on the correlation between the variables and other variables in different conditions and different fields of knowledge. It is also possible that there is a distinct correlation between metacognition with students’ retention in a variety of biology learning strategy. Therefore, it is necessary to explore the correlation between metacognition with students retention.

Based on the background above, it is necessary to conduct the research to explore the correlation between metacognition with students’ retention of use four different learning strategies. Those learning strategy is PBL, RQA, PBLRQA, and traditional learning. The results of this research can be valuable information for the teacher to select appropriate learning strategies in biology classroom that not only enhance students' cognitive learning outcomes, but also can empower student metacognition and increase students' retention.

METHODS

This study was a quasi-experiment, designed to explore the correlation between metacognitive skills with the retention of students taught by different biology learning strategies namely: Problem-based Learning (PBL), Reading Questioning and Answering (RQA), the integration of PBL and RQA (PBLRQA), and multi-strategy. The study was conducted on students at the Faculty of Mathematics and Natural Sciences at the Universitas Negeri Makassar, Indonesia in 2014. The research sample obtained by random sampling to early academic skills homogeneous grouping based test as many as 142 students of the first semester distributed into four classes. Metacognitive skills of students measured using essay test that was integrated with tests of cognitive learning outcomes and students' retention. Instruments were valid and reliable. During one semester, the four classes were taught by treatment with different learning strategies. Metacognitive skills test was given at the beginning and end of the semester. Retention test was given two weeks after the end semester.
RESULTS AND DISCUSSION

Results

Multi-strategy

The results of the data analysis related to the correlation regression equation between metacognitive skills and retention of students in the implementation of multi-strategy are illustrated in Table 1.

<table>
<thead>
<tr>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(Constant)</td>
<td>0.536</td>
</tr>
<tr>
<td>Metacognitive Skills</td>
<td>-0.700</td>
</tr>
</tbody>
</table>

The results of the data analysis in Table 1 show that the correlation regression equation between metacognitive skills and cognitive retention of students in the implementation of multi-strategy was statistically significant. The contribution value related is 0.15, meaning that the contribution of metacognitive skills and cognitive retention of students is 51.1%, and the contribution of the factors other than metacognitive skills is 48.9%.

PBL Strategy

The results of the data analysis related to the correlation regression equation between metacognitive skills and retention of students in the implementation of PBL are illustrated in Table 2.

<table>
<thead>
<tr>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-3.877</td>
</tr>
<tr>
<td>Metacognitive Skills</td>
<td>-0.326</td>
</tr>
</tbody>
</table>

The results of the data analysis in Table 2 show that the correlation regression equation between metacognitive skills and cognitive retention of students in the implementation of PBL was statistically significant. The contribution value related is 0.15, meaning that the contribution of metacognitive skills and cognitive retention of students is 15.8%, and the contribution of the factors other than metacognitive skills is 84.2%.

RQA Strategy

The results of the data analysis related to the correlation regression equation between metacognitive skills and retention of students in the implementation of RQA are illustrated in Table 3.

<table>
<thead>
<tr>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(Constant)</td>
<td>5.946</td>
</tr>
<tr>
<td>Metacognitive Skills</td>
<td>-0.317</td>
</tr>
</tbody>
</table>

The results of the data analysis in Table 3 show that the correlation regression equation between metacognitive skills and cognitive retention of students in the implementation of RQA was statistically significant. The contribution value related is 0.15, meaning that the contribution of metacognitive skills and cognitive retention of students is 14%, and the contribution of the factors other than metacognitive skills is 86%.
PBLRQA Strategy

The results of the data analysis related to the correlation regression equation between metacognitive skills and retention of students in the implementation of PBLRQA are illustrated in Table 4.

Table 4. The regression correlation coefficient of metacognitive skills and students’ retention in PBLRQA

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>6.260</td>
<td>6.909</td>
<td>0.906</td>
<td>0.371</td>
</tr>
<tr>
<td>Metacognitive Skills</td>
<td>-0.344</td>
<td>0.141</td>
<td>-0.387</td>
<td>-2.446</td>
</tr>
</tbody>
</table>

The results of the data analysis in Table 4 show that the correlation regression equation between metacognitive skills and cognitive retention of students in the implementation of PBLRQA was statistically significant. The contribution value related is 0.15, meaning that the contribution of metacognitive skills and cognitive retention of students is 15% and the contribution of the factors other than metacognitive skills is 85%.

Regression line of metacognitive skills with students’ retention in four learning strategies were compared with each other to determine the alignment and coincidence between all of regression line and to determine the learning strategies that have the highest correlation between metacognitive skills with students’ retention. The comparison of regression line between the four learning strategies is shown in Figure 1.

Figure 1 showed that the traditional learning strategies, students’ retention tends to decrease drastically. The different thing is indicated by PBLRQA strategy, PBL and RQA, where, in the same time, retention of students has decreased gradually. Figure 1 also showed the graph of the ANOVA test related to regression equation of correlation between metacognitive skills and students’ retention in the four different learning strategies appears that the regression line of RQA is the highest than those of the other three strategies with the regression coefficient -0.3173.

The results of the analysis of variance related to correlation regression equation between students’ metacognitive skills and their retention in the four different strategies are illustrated in Table 5.

Table 5. Summary of the ANOVA test result of the regression equation of the correlation

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>30425,515</td>
<td>7</td>
<td>4346,502</td>
<td>250,641</td>
<td>0,000</td>
</tr>
<tr>
<td>b3, b5</td>
<td>364,461</td>
<td>6</td>
<td>60,743</td>
<td>3,503</td>
<td>0,048</td>
</tr>
<tr>
<td>b2, b3, b4, b5</td>
<td>2323,768</td>
<td>134</td>
<td>17,342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: parallel & not coincide

ANOVA test result indicates that the value of b3, b5 is 0.241 (>0.05), but the value of b2, b3, b4, b5 is 0.048 (<0.05). Those values prove that the regression lines related to the correlation between the students’ metacognitive skills and their retention are parallel to each other, as well as do not coincide.
Discussion

The result of the study indicated that the correlation between metacognitive skills with students’ retention was statistically significant. The results are consistent with research result by Muhiddin (2016) and Bahri (2016) who reported that there was a correlation between metacognitive skills with students’ retention. According to Anderson & Krathwohl (2001), metacognitive useful to help students found a variety of learning strategies that can be used to memorize the course material, looking for the meaning of the text, or understand what they studied in the classroom or on from reading a book. Memorizing the subject matter associated with retention.

Metacognition was a strong predictor of academic success (Dunning, et al., 2003; Countinho, 2007). It is further mentioned that learners who have good metacognition will have a good achievement anyway. The students can improve their academic performance through training metacognition. Similarly, O’Malley and Chamot (1990) and Ellis (1999) mentioned that a student without a metacognitive approach could not review their learning progress and achievements. Flavell (1979) stated that metacognition played an important role in the learning process. Students who were learning have the skills to manage and control their learning process (Uno, 2008).

Thinking as activities that involve mental processes requires the ability to remember and understand, and to be able to remember and understand the necessary mental process (thinking). Sanjaya (2008) explained that the ability to think was definitely followed by the ability to remember and understand. Thus, metacognition have a positive correlation with retention. Others, Kauchak & Eggen (2007) mentioned that metacognition, and content knowledge related to each other. The learners who have metacognition mean that learners are able to regulate and control the cognitive processes so that knowledge can also be increased. Learners who have the metacognitive skills will demonstrate understanding of the concept. On the basis of this relationship, metacognition is also associated with retention. Therefore, if the students have a high metacognition, then their retention also be high.

This statement is in line with Anderson & Krathwohl (2001) stated that the purpose of learning was to cultivate the ability of retaining the same subject matter as the material being taught and the minimal cognitive processes was remembering. It was further mentioned, metacognitive knowledge was one of the knowledge was needed. Metacognitive “remembering” knowledge is essential as a preparation for meaningful learning and resolve problems, such knowledge is used in more complex tasks.

Peters (2000) stated that metacognitive skills help the students to be self-regulated learners learners, self-management and self-evaluation. The same thing also expressed by Eggen and Kauchak (1996) that metacognitive skills helped students more responsible for their own learning progress and adapting learning strategies to achieve the demands of the task. Implementation of the task demands needs the retention.

Retention was the amount of knowledge learned by the students could be stored in memory and could be revealed again in a certain time interval (Pranata, 2006). Memory was the information retention over time involving the storage, encoding, and recalling of information (Santrock, 2007). In line with the references above, the characteristic of Biology classroom that have been conducted shows that emphasize learning in metacognitive skills lead the students will more easily remember the learning materials within a certain period. Sumampouw (2011) argued that the retention could be increased through the metacognitive skills. Metacognitive skills were believed to play an important role in many types of cognitive activity includes understanding, communication, attention, retention, and problem solving (Howard, 2004).

The implementation of appropriate biology learning strategy will be effective to empower the students’ retention. Retention measurement after learning process is important to monitor the developments of mastery learning. It aims to find out the ability of students to memorize the learning material that has been accepted. Slavin (2000) explained that someone could stored information in memory, not only the information relating to the facts, but also in the form of learning strategies to make it easier to be accessed again. Yeli (2007) explained that the memory associated with the experience would be stored on the memory containing facts, concepts, principles and rules for how to use it.

CONCLUSIONS

The research results showed that the correlations between metacognitive skills and students’ retention were significant. The results of the analysis of variance related to the regression equation in the four different strategies were parallel and not coincide and the regression line of RQA strategy was at the highest position. It indicated that this strategy has the potency to empower metacognitive skills and simultaneously maintained the students’ retention. It would be an important information for lecturers that they should empower the metacognitive skills through the appropriate learning strategies because it was believed could effected the students’ retention.
REFERENCES

