PROCEEDING
INTERNATIONAL CONFERENCE ON STATISTICS, MATHEMATICS, TEACHING, AND RESEARCH
ICSMTR 2015
Increasing Statistical and Mathematical Literacy through High Quality Teaching and Research
October 9-10, 2015
Makassar, South Sulawesi, Indonesia

STATISTICS DEPARTMENT AND MATHEMATICS DEPARTMENT
STATE UNIVERSITY OF MAKASSAR
INDONESIA
CONFERENCE PROCEEDING

International Conference on Statistics, Mathematics, Teaching, and Research

Makassar, South Sulawesi, Indonesia
October 9 – 10, 2015

Increasing Statistical and Mathematical Literacy through High Quality Teaching and Research

Statistics Department and Mathematics Department
Faculty of Mathematics and Natural Sciences
State University of Makassar
Indonesia
WELCOME SPEECH

Forewords from the Head of Committee

Bismillahirrahmanirrahim
Assalamu’alaikum Warahmatullahi Wabarakatu

First, I want to give our welcome to all the delegates, speakers, and participants coming today. Welcome to the State University of Makassar, UNM.

This International Conference on Statistics, Mathematics, Teaching, and Research (ICSMTR) 2015 is primarily organized by Statistics Department and Mathematics Department, Faculty of Mathematics and Sciences, State University of Makassar. It is conducted in two days from 9th to 10th October 2015. It involves one keynote speaker, Governor of South Sulawesi, eight invited speakers, and approximately 80 parallel speakers. Besides, this conference also invites delegates from twelve LPTKs (Institute of Teacher Education) to conduct a scientific meeting reviewing KKNI for Mathematics Education curriculum in higher education.

Ladies and gentlemen, as I previously said, the conference proudly invites eight invited speakers coming from several countries. Therefore, on behalf of the committee members, I would like to express my sincere thanks to the invited speakers, specifically:

1. Professor Kerrie Mengersen (Queensland University of Technology, Australia)
2. Professor Shigehiko Kanaya (Nara Institute of Science and Technology, Japan)
3. Professor Ahmad A. Bahnassy (Faculty of Medicine, King Fahd Medical City, Saudi Arabia)
4. Professor I Gusti Ngurah Agung (State University of Makassar, Indonesia)
5. Professor Hamzah Upu (State University of Makassar, Indonesia)
6. Professor Muhammad Arif Tiro (State University of Makassar, Indonesia)
7. Professor Mohd. Salmi Md Noorani (Universiti Kebangsaan Malaysia, Malaysia)
8. Dr. Darfiana Nur (Flinders University, Australia)

Next, it is my privilege to thank all organizing committee members for their contributions to the success of this event. I would like also to apologize for all of you if there are some inconvenience during this conference.

Finally, I would like to thank to the speakers and participants. I wish you all have two fruitful days in Makassar.

Thank you very much for the attention.

Wassalamu’alaikum Warahmatullahi Wabarakatu

Suwardi Annas, Ph.D.
Head of Committee
Forewords from the Dean of Mathematics and Sciences Faculty,

State University of Makassar

Bismillahirrahmanirrahim
Assalamu’alaikum Warahmatullahi Wabarakatuh

Alhamdulillah, all praises be to the Almighty God, Allah subhanahu wata‘ala.

I would like to say that I welcome and highly appreciate any attempts of both the Statistics Department and Mathematics Department to organize this International Conference on Statistics, Mathematics, Teaching, and Research in the State University of Makassar. I do hope that this conference would be a great chance for you as researchers or scholars in enhancing your research quality within a framework of evolving sciences. May Allah subhanahu wata‘ala opens our mind, widens our view, strengthens our soul, and blesses our conference that it will be useful as we are hoping.

At last, as the Dean of the Faculty of Mathematics and Natural Sciences, State University of Makassar (FMIPA UNM), I am sure that there are some weaknesses and mistakes in performing this conference. I therefore do apologize to you and may Allah subhanahu wata‘ala forgive all of us.

Wassalamu’alaikum Warahmatullahi Wabarakatuh

Professor Abdul Rahman
Dean of Faculty of Mathematics and Sciences
State University of Makassar
Forewords from Rector of UNM

Bismillahirrahmanirrahim
Assalamu’alaikum Warahmatullahi Wabarakatuh

Your respectable, the high officials of State University of Makassar, the committee, the speakers, and the participants of conference.

It gives me great pleasure to extend to you all a very warm welcome, especially to our keynote speakers who have accepted our invitation to convene the conference. ICSMTR is one of our educational activities that covers a wide range of very interesting items relating to statistics, mathematics, teaching and research.

By taking participation of this conference, it is highly expected to all of us to share our research findings to society and continuously develop new ideas and knowledge. Those things are two significant steps in improving the quality of nations around the world, increasing our familiarity to each other, and even avoiding underdevelopment.

Furthermore, I would like to take this opportunity to express my heartfelt gratitude to all organizing committee especially for Statistics Department and Mathematics Department of Faculty Mathematics and Natural Sciences that primarily hosts this conference.

Finally, this is a great time for me to declare the official opening of the International Conference on Statistics, Mathematics, Teaching, and Research (ICSMTR) 2015.

I wish you a very enjoyable stay in Makassar
I warmly welcome you again, as in Makassar, we say “salamikki battu ri mangkasara”

Wassalamu’alaikum Warahmatullahi Wabarakatuh.

Prof. Dr. H. Arismunandar, M.Pd.
Rector of State University of Makassar
TABLE OF CONTENTS

Welcome Speech
iv

Table of Contents
vii

Keynote Speakers

The Power and Promise of Immersive Virtual Environments: Extracting Expert Information to Support Rare or Unseen Spatial events
Kerrie Mengersen
1

Teaching Biostatistics for Health Care Professionals
Ahmed A. Bahnassy
2

Projective Lag Synchronization in Complex Dynamical Networks Via Hybrid Feedback Control
Mohd. Salmi Md Noorani, Ghada Al-Mahbashi
3

Experiences in Online Teaching of Statistics Topics
Darfiana Nur
4

Jamu Informatics: Strategy for Data Accumulation and Mining Concerning to Plane-Diseases Relations by KNApSAcK DB toward Big Data Science
Sony Hartono Wijaya, Shigehiko Kanaya
5

Misinterpretation of Some Selected Theoretical Concepts of Mathematical Statistics
I Gusti Ngurah Agung
6

Research on Teaching Statistics
Muh. Arif Tiro
7–16

Trend of Education Quality Improvement in Indonesia
Hamzah Upu
17–26

Parallel Speakers

Heterogeneous Regressions, Fixed Effects, or Random Effects Models. Is your Accounting Model Appropriately Presented?
I Gusti Ngurah Agung, Dodik Siswantoro
27–55

The Estimation of Generalized Seasonal Autoregressive Integrated Moving Average (GSARIMA) Models using Bayesian Approach for Forecasting the Number of Dengue Hemorrhagic Fever (DHF) Patients
Asrirawan, Suhartono
56–65

International Conference on Statistics, Mathematics, Teaching, and Research 2015
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian Spatial Modeling and Mapping of Dengue Fever The Case of the City of Bandung, Indonesia</td>
<td>66 – 75</td>
</tr>
<tr>
<td>I Gede Nyoman Mindra Jaya, Henk Folmer, Budi Nurani Ruchjana</td>
<td></td>
</tr>
<tr>
<td>Bayesian Dengue Disease Mapping for Juvenile and Adult in Bandung, Indonesia</td>
<td>76 – 89</td>
</tr>
<tr>
<td>F. Kristiani, N.A. Samat, S.A. Ghani</td>
<td></td>
</tr>
<tr>
<td>Bayesian Estimation of Meta-Regression Model in Meta-Analysis Using a Linear Model Theorem</td>
<td>90 – 101</td>
</tr>
<tr>
<td>Junaidi, Darfiana Nur, Irene Hudson</td>
<td></td>
</tr>
<tr>
<td>Estimation of Loading Factor for Reflective and Formative Measurement Model SEM</td>
<td>102 - 115</td>
</tr>
<tr>
<td>Ruliana, I.N Budiantara, B. W Otok, W. Wibowo</td>
<td></td>
</tr>
<tr>
<td>Estimation Parameters and Testing Hypotheses for Geographically Weighted Negative Binomial Bivariate Regression</td>
<td>129 – 129</td>
</tr>
<tr>
<td>M. Ichsan Nawawi, I Nyoman Latra, Purhadi</td>
<td></td>
</tr>
<tr>
<td>Circular Descriptive Statistics for Describing Students’ Sleeping Time</td>
<td>130 – 137</td>
</tr>
<tr>
<td>Cici Suhaeni, I Made Sumertajaya</td>
<td></td>
</tr>
<tr>
<td>Forecasting the Exchange Rate of U.S. Dollar against the Rupiah Using Model Threshold Autoregressive Conditional Heteroscedasticity (TARCH)</td>
<td>138 – 151</td>
</tr>
<tr>
<td>Hisyam Ihsan, Aswi, Ihram</td>
<td></td>
</tr>
<tr>
<td>Population Problem Indexes By Kabupaten in Sulawesi Selatan: A Study based on SUSENAS 2013</td>
<td>152 – 168</td>
</tr>
<tr>
<td>I Gusti Ngurah Agung, Muhammad Nusrang</td>
<td></td>
</tr>
<tr>
<td>Bias Comparison of Parameter Estimates In Cox Proportional Hazard and Logistic Regression (Case Study in Student’s Length of Study at Cokroaminoto University)</td>
<td>169 – 181</td>
</tr>
<tr>
<td>Rahmat Hidayat</td>
<td></td>
</tr>
<tr>
<td>Spatial Analysis of the Spread of Tuberculosis using Local Indicator of Spatial Association (LISA) in Makassar, Indonesia</td>
<td>182 – 192</td>
</tr>
<tr>
<td>Aswi, Ahmad Zaki, Hijrayanti</td>
<td></td>
</tr>
<tr>
<td>The Worst ANCOVA Model among All Possible Models With The Same Set of Variables</td>
<td>193 – 210</td>
</tr>
<tr>
<td>I Gusti Ngurah Agung, Suwardi Annas</td>
<td></td>
</tr>
<tr>
<td>Algorithm of Spatial Outlier Detection NbrAvg And AvgDiff (Case Study on HDI in the province of South Sulawesi)</td>
<td>211 – 223</td>
</tr>
<tr>
<td>Muhammad Nusrang</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Analysis of Susceptible, Infected, Recovered, Susceptible (SIRS) Model for Spread of the Acute Respiratory Tract Infections (ARI) Disease</td>
<td>224 – 237</td>
</tr>
<tr>
<td>Yulita Molliq Rangkuti, Syafruddin Side, Elvira Nanda Faramitri Harahap</td>
<td></td>
</tr>
<tr>
<td>The Characteristics of Conicoid Based on Its Center</td>
<td>238 – 245</td>
</tr>
<tr>
<td>Sahlan Sidjara, Bahar</td>
<td></td>
</tr>
<tr>
<td>Stability Analysis Susceptible, Exposed, Infected, Recovered (SEIR) Model for Spread of Dengue Fever in Medan</td>
<td>246 – 259</td>
</tr>
<tr>
<td>Syafruddin Side, Yulita Molliq Rangkuti, Dian Gerhana Pane, Marlina Setia Sinaga</td>
<td></td>
</tr>
<tr>
<td>Some Remarks on Submodule Almost Prime of Multiplication Modules</td>
<td>260 – 263</td>
</tr>
<tr>
<td>Sahlan Sidjara</td>
<td></td>
</tr>
<tr>
<td>Membership Function of Depth Hypnosis with Davis Husband Scale</td>
<td>264 – 272</td>
</tr>
<tr>
<td>Ja’faruddin, Muhammad Kasim Aidid, Sitti Indah Rahmadana Darwis</td>
<td></td>
</tr>
<tr>
<td>The Application of Algebraic Methods in Balanced Incomplete Block Design.</td>
<td>273 – 277</td>
</tr>
<tr>
<td>Muhammad Abdy</td>
<td></td>
</tr>
<tr>
<td>Modeling the Spread of Tuberculosis with Bayesian Car</td>
<td>278 – 288</td>
</tr>
<tr>
<td>Muhammad Kasim Aidid, Aswi, Ansari Saleh</td>
<td></td>
</tr>
<tr>
<td>Application Rank Matrix to Determine the Type of Conics</td>
<td>289 – 399</td>
</tr>
<tr>
<td>Bahar, Fitriani</td>
<td></td>
</tr>
<tr>
<td>The Odd Risks of Pregnancy Mothers with CED (Chronic Energy Deficiency) to the Baby with LBW (Low Birth Weight), and SBBL (Short Birth Body Length) in the Public Health Center of Pattingaloang Makassar</td>
<td>300 – 310</td>
</tr>
<tr>
<td>Muhammad Nadjib Bustan, Amaliyah Maulana Asis</td>
<td></td>
</tr>
<tr>
<td>Using of C-Means Cluster Analysis in Object Grouping (Study of Poor Villages Grouping in Pangkep).</td>
<td>311 – 318</td>
</tr>
<tr>
<td>Irwan, Zulkifli, Firdaus</td>
<td></td>
</tr>
<tr>
<td>Huffman Code to Transmit Messages in Data Communication</td>
<td>319 – 325</td>
</tr>
<tr>
<td>Sulaiman</td>
<td></td>
</tr>
<tr>
<td>Genetic Algorithm in Solving Traveling Salesman Problem (TSP)</td>
<td>326 – 340</td>
</tr>
<tr>
<td>Sulaiman</td>
<td></td>
</tr>
<tr>
<td>Inferential Statistical Reasoning of Preservice Teachers Based on Gender Differences in Solving Statistical Problem.</td>
<td>341 – 349</td>
</tr>
<tr>
<td>Rosidah</td>
<td></td>
</tr>
<tr>
<td>Association between the Perception on Statistics and Statistical Thinking Ability of the Students in Integrated Social Science Education of Social Faculty in State University of Makassar</td>
<td>350 – 360</td>
</tr>
</tbody>
</table>

International Conference on Statistics, Mathematics, Teaching, and Research 2015
Misveria Villa Waru, Ilham Minggi, Suwardi Annas

A Cross-National Comparative Analysis of Statistics Problems in Indonesia and Australia Secondary School Mathematics Textbooks: What Might We Learn?
Bustang, Usman Mulbar

Description of Probability Literacy and Randomized Events Literacy for Statistics Student at FMIPA UNM
Sudarmin, Muhammad Arif Tiro, Irwan

Innovation in Statistics for Learning
Andi Arisyi Zulwaqar, Nurfadhila Fahmi Utami, Muhammad Nusrang

Preservice Teacher’s Reflective Thinking process in Solving Mathematical Problem who has Field Independent Cognitive Style
Agustan S., Dwi Juniati, Tatag Y.E.S.

Development of Mathematics Learning Model Based on Student Character Involving Student Emotional Intelligence as a Prospective Teacher
Muhammad Ilyas

Developing Hypnoteaching Model in Mathematic Teaching (Hypnomatching)
Rusli, Ja’faruddin

Prospective Mathematics Teachers’ Ability in Solving Contextual Problem Concerning Geometry
Syahrullah Asyari, Rahmat Kamaruddin, Sitti Busyrah Muchsin, Ikhbariaty Kautsar Qadry

Assessing Mathematics Skills through KONCAMA Learning
Asdar, Jeranah

The Development of Social Learning Model based on Metacognitive Strategies to Foster Mathematics Self-Efficacy of the Senior High School Students
Ramlan Mahmud, Alimuddin Mahmud, Suradi Tahmir

Adaptive Reasoning and Strategic Competence in Solving Mathematical Problems
Andi Syukriani

Effectiveness of Appropriation Motivation toward Students’ Problem Solving Capability in Math Lessons
Khaerunnisa Syatir, Kartika Cahyaningrum, Amira Aminanty, Ahmad Ridfah

International Conference on Statistics, Mathematics, Teaching, and Research 2015
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Model of Authentic Assessment based Showcase Portfolio on Learning of Mathematical Problem Solving in Senior High School Sukmawati, Faihatuz Zuhairoh</td>
<td>487 – 499</td>
</tr>
<tr>
<td>Students’ Metacognition in Constructivism based Mathematics Learning Usman Mulbar</td>
<td>500 – 511</td>
</tr>
<tr>
<td>Identification of Students’ Misconceptions In Understanding the Concept of Simple Fractions Using CRI (Certainty of Response Index) Darwan, Asdar, Nasrullah</td>
<td>512 – 520</td>
</tr>
<tr>
<td>Realistic Mathematics Education with the Sense of Madurese Culture Sri Indriati Hasanah</td>
<td>521 – 525</td>
</tr>
<tr>
<td>Teacher Training and Recharging about Learning Models in Curriculum 2013 to Improve Teaching Quality of Math Teachers Suradi Tahmir, Nasrullah</td>
<td>537 – 545</td>
</tr>
<tr>
<td>Mathematics Learning Software Development Involving Adversity Intelligence Approach Through the Submission of the Problem Vivi Rosida, Bakhtiar</td>
<td>546 – 564</td>
</tr>
<tr>
<td>Relation among Attitude toward Mathematics, Mathematics Self-Efficacy, and Mathematics Achievement Fajar Arwadi</td>
<td>565 – 576</td>
</tr>
<tr>
<td>A Profile of the Quality of Problem Posing Based Mathematics Learning Model in Improving Prospective Teachers’ Creativity Alimuddin, Syahrullah Asyari</td>
<td>575 – 590</td>
</tr>
<tr>
<td>The Development of Mathematical Communication based Worksheet with Character of Indonesian Culture Izwita Dewi, Tiur Malasari Siregar, Nurhasanah Siregar</td>
<td>591 – 599</td>
</tr>
<tr>
<td>Pedagogical Content Knowledge (PCK): Type of Particular Knowledge for Teacher to Effective Learning (Case study of Mathematics Teacher at SMA) Ma’rufi</td>
<td>600 – 611</td>
</tr>
<tr>
<td>Development of Learning Devices of Cybernetic Cooperative in Discussing the Simplex Method in Mathematics Education Students of FKIP UHO Arvyaty, Ld. Ahmad Jazuli, Saleh, Latif Sahidin, Ikman, Kadir Tya, Yoo EKAYANA Kansil, Hastuti Musa</td>
<td>612 - 621</td>
</tr>
<tr>
<td>Design Research : Evoking Cognitive Conflict and Problem Simplification Strategy to Improve Students’ Concept understanding in Problem Solving</td>
<td>622 - 634</td>
</tr>
</tbody>
</table>
Skills in The Topic of Combinatorics
Nurdin Arsyad, Djaïr, Fajar Anwadi

The Model Development of Interprofessional Education (IPE) in the Faculty of Health Sciences (FKI) Islamic State University (UIN) Alauddin Makassar
Nur Hidayah, Saldi Yusuf

Implementation of Learning Base-Guided Inquiry in the Lecture of Interaction between Physical Factors at Teacher Science Candidate
Muh. Tawil, Sitti Rahma Yunos

Teaching Physics through Top Down Approach to Teach Critical Thinking Skills
Aisyah Azis, Muhammad Aqil Rusli, A Momang Yusuf

Gasing Physics as Solution for Teaching Kinematics
Muhammad Aqil Rusli, A.Momang Yusuf, Aisyah Azis, Agus Purwanto, Jutri Taruna

The Application of Student Worksheet based Local Wisdom in Physics Learning
M. Agus Martawijaya

Implementation of Dynamic Problem Solving Strategies (DPSS) for Basic Electronics Subject, Physics Department, Makassar State University
Abdul Haris, Nurul Kusuma Wardani, Sirajuddin Jalil, Risnawati, Subaer

The Effect of Teacher Competence toward Physics Achievement by Controlling Prior Knowledge
Salamang Salmiah Sari

Utilizing ADDIE Model for Developing Brilian, Learning Application in Institute of Business and Informatics STIKOM Surabaya, Indonesia
Dewiyani, Bambang Hariadi

Identification of Game Model for Health Education in Preschoolers
Arbianingsih, Yeni Rustina

The Effect of Educational Level and Environmental Attitude toward the Hygienic and Healthy Life Behavior of Housewives at Bontoa District Maros Regency
Firdaus Daud, Muhammad Wiharto, Halifah Pagara

Development of Teaching Material for Geography in SMA/MA on Grade X with Dick and Carey Model
Maddatuang

Mapping Protected and Cultivation Zone in North Luwu, South Sulawesi, Indonesia
Rosmini Maru, Muh. Rais Abidin, Amal, Ibrahim Abbas, Supraptap
The Development of Investigation-Based Chemistry Learning Tools for Senior High School and Its Effect toward Student's Critical Thinking Skill and Concept Mastery
Muhammad Danial, Pince Salempa, Anis Muliat, Husnaeni
761 – 772

The Influence of Using Instructional Media Lectora Inspire to Student's Learning Outcomes of Class X at Material of Invertebrate at SMA Negeri 9 Bulukumba
Andi Asmawati Aziz, Nurhayati B, Andi Irma Mutmainnahtul Adawiyah
773 – 783

Contextual Teaching Learning Approach in Economy Improving Learning Outcomes in SMA Negeri 1 Maros
Muhammad Azis
784 – 803

Entrepreneurship Education Analysis and Its Effect on Entrepreneurial Intentions (A study on Economics Education Students at Faculty of Economics in State University of Makassar)
Muhammad Rakib
804 - 816
ASSOCIATION BETWEEN THE PERCEPTION ON STATISTICS AND STATISTICAL THINKING ABILITY OF THE STUDENTS IN INTEGRATED SOCIAL SCIENCE EDUCATION OF SOCIAL FACULTY IN STATE UNIVERSITY OF MAKASSAR

Misveria Villa Waru¹, Ilham Minggi², and Suwardi Annas³

¹Postgraduate Program, State University of Makassar
Jl. Bonto Langkasa, Makassar
Email: veriawaru@gmail.com

²Mathematics Department, State University of Makassar
Kampus UNM Parangtambung, Jl. Daeng Tata Raya Makassar
Email: ilhamminggi@gmail.com

³Statistics Department, State University of Makassar
Kampus UNM Parangtambung, Jl. Daeng Tata Raya Makassar
Email: suwardi_annas@yahoo.com

ABSTRACT

Some of the students on Social Science Department revealed that they less enjoyed the statistics and less integrated when given the task by statistics lecturer. One of aspects which assessed in statistics is statistical thinking ability. The statistical thinking ability is the ability to understand and comprehend the whole of statistical process. This study aims is to describe perception in statistics based on statistical thinking ability of the students in integrated social science education of social faculty in state university of Makassar. The study is a descriptive research with quantitative method. The subjects of the study were six students in Integrated Social Science Education Department consisted of two high ability students, two medium ability students, and two low ability students. The data were collected by conducting technique or method triangulation used to collect the data from the same source with different techniques, namely written tests on forms of questionnaire and test. The result of the study reveals that the result of Chi-Square test obtained \(\chi^2_{hitung} = 8.630 \) and \(p_{value} = 0.013 \) where \(p_{value} < 0.05 \), meaning that there is significant correlation or association between statistical thinking ability and the perception on statistics. Almost all of high ability student have positive perception, more of half of medium ability students have negative perception, and almost all of low ability students have negative perception.

Keywords: perception of statistics, statistical thinking.
1. INTRODUCTION

Based on the initial interview conducted on several student Social Sciences, most of them mentioned that they are less and less attention to the statistical enjoys when given the task of a lecturer in statistics. It is an impact on their ability to complete the final project or thesis because of their lack of knowledge in terms of determining the statistical process proposed in their research methods. One aspect that is assessed in statistical science is the ability to think statistically or Statistical Thinking Ability.

Statistical thinking skills is the ability to understand and grasp the overall statistical processes, and apply an understanding of the real problems with the critique, evaluate, and make generalize relates to describe the data. On the basis of these considerations and because of the many factors that affect the ability to think statistically (Statistical Thinking), as well as to improve the accuracy of the results, so in this study will be assessed variables that theoretically allegedly associated with the ability mastery of statistics students FIS UNM especially the ability to think statistically (Statistical Thinking), variable perceptions of statistics.

This study aimed to determine the association between the perceptions of statistics with statistical thinking skills (Statistical Thinking) on the education of students majoring in Integrated Social Sciences Faculty of Social Sciences UNM; and to describe the factors that influence the perception of statistics on student majoring in Social Science Education Faculty of Social Sciences UNM.

2. GENERATION OF THE DATA

2.1. Perception about statistics

Understanding the perception according Slameto (2010: 102) is "a process that involves the inclusion of information in the human brain". Humans will be in constant contact with the environment through perception. Rachmat (1992: 251) explains that "perception is the experience of objects, events, or relationships obtained by concluding information and interpret the message".

Further Walgito (2002: 87) explains that "perception is a process that is preceded by the sensing process, ie the process of receipt of the stimulus by the individual through the sensory organs or also called sensory processes". Another opinion expressed by Learner (Mulyono, 2003: 151) defines a "perception is the limit used in the process of understanding
and interpreting sensory information or intellectual ability to plan the meaning of the data received from the various senses”.

Perceptions of students raises a very important factor in influencing attitudes, achievement, education and career choice compared to other variables such as anxiety, Math experience, and confidence (Maria and George, 2002). Perception is a view of a personal nature. Perceptions can emerge with the aid of the senses, either through auditory, visionaries, feeler, and the other senses. Perceptions also arise because of the encouragement of knowledge reinforced by experience and observation that a person does.

2.2. Statistical thinking

Laurie et al (2002: 17) revealed that "students who lack mastery on the basic facts will continue to experience failure as subsequent math instruction is provided." Students who do not master the basic concepts of mathematics since the basic level will remain at the same level even though it should already be at a high level.

Similarly said Haddens (Battle 2007: 12) that "learning and mastering the basic skills of mathematics Allows for student achievement in the subject". Previous Ron Snee (1986: 27) says "..., statistical thinking is used to describe the thought processes that acknowledge the ubiquitous nature of variation and that its identification, characterization, qualification, control, and reduction provide a unique opportunity for improvement ...". Statistical thinking is used to describe the thought process that recognizes the nature of that variation everywhere, identification, characterization, qualification, control, and reduction to provide a unique opportunity in a repair.

Furthermore Snee (1990: 118) defines think statistically as the thought process that tests that variation is all around us and is present in everything that we do, all the work of a series of processes that are interconnected, and identify, karakteristisasi, measurement, control, and reduce variation provides an opportunity for improvement.

Shaughnessy et al. (1997) states that statistical thinking process (statistical thinking) there are four, abbreviated DORA, namely: 1) describing Data Displays; 2) Organizing and Reducing Data; 3) Representing Data; and 4) Analyzing and Interpreting Data. Furthermore, any statistical thinking process (statistical thinking) consists of four levels, abbreviated ITQA namely: 1) idiosyncratic; 2) Transitional; 3) Quantitative; 4) Analytical.
2.3. Affecting factors of perception

According Widayani (2011) so that the individual can be realized, can be held perception, it is affected by several factors:

1. The existence of the object perceived
 The object of the stimulus that the sensory organs or receptors. The stimulus may come from outside directly on the sensory organs.

2. Tool sensory or receptor
 It is a tool to receive a stimulus and as a tool to organize responses require motor nerve.

3. Attention
 To realize or to conduct perception of something is necessary also for attention is the first step as a preparation for the holding of perception. Attention occurs when we concentrate on one of the tools of our senses, and the exclusion of inputs through other sensory organs (Rachmat, 1986).

The same context expressed Xinrong Yang (2013) that there is consistency and a significant relationship between students' perception of their learning environment with their mathematics achievement. The relationship identified from the results of the students and their perception of affective about mathematics learning environment, especially in terms to motivate students.

Based on the study of theory and framework set forth above, then the hypothesis is formulated as follows: "There is an association between the perceptions of statistics with statistical thinking skills (Statistical Thinking) on the education of students majoring in Integrated Social Sciences Faculty of Social Sciences UNM".

3. METHOD

This research is a descriptive study. Subjects in this study were students majoring in Integrated Social Education FIS force UNM 2013. The subject of this research as much as 6 people consisting of 2 high-ability students, 2 students capable of being, and 2 low-ability students.
Perceptions of statistics are a response (acceptance) directly from something the person knows some things through the senses. This variable is measured on student opinion obtained from a questionnaire containing their responses on: 1) understanding of the object of statistics, 2) the benefits and usefulness of statistics, 3) attention to statistics. Indicators of perception on statistics are presented in the table below.

Table 1: Indicators of perception on statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimension/Aspects</th>
<th>Indicators</th>
</tr>
</thead>
</table>

Statistical Thinking is the ability to understand and grasp the overall statistical process. This variable is measured by a test given to students which contain indicators on: understanding the concept or the scope of the data, classify the data, presenting data, calculating data, and analysing and interpret data. The indicators used to measure the ability to think statistically (Statistical Thinking) is a student able to:

1. Understanding the concept or the scope of the data.
2. Grouping the data.
3. Presenting data
4. Calculate data.
5. Analyze and interpret data.

The instruments used are 1) test the ability to think statistically in the form of a written multiple choice test on the material introduction of social statistics; 2) Questionnaire perception of statistics in the form of a closed questionnaire, the questionnaire on each item becomes available alternatives so that the respondents' answers can easily select one answer from the answer alternatives are available.

Further analysis is Chi-square analysis to find associative or statistical relationship between the thinking skills of students who categorized high, medium, low, with students' perceptions about the statistical category of high, medium low.
The chi-square formula is as follows:

\[\chi^2 = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{(P_{ij} - H_{ij})^2}{H_{ij}} \]

where,

- \(\chi^2 \) : Chi-Kuadrat value
- \(P_{ij} \) : Frequency of observation in row-i column-j
- \(H_{ij} \) : Frequency of probability in row-i column-j

4. RESULT AND DISCUSSION

Furthermore, the data presented the results of research and discussion about the perception of a statistical description in terms of the level of Statistical Thinking on the education of students majoring in Integrated Social Sciences Faculty of Social Sciences UNM. In this study, the research subjects are determined based on statistical thinking skills of students through a written test or TKBS. Furthermore, researcher analyzed scores of each student's ability to think statistically and breaks it into three categories: high, medium, and low. Then the students should also be given a questionnaire with the aim to measure the perceptions of students' perceptions about the statistics. Of student scores obtained from the questionnaire perception of statistics analyzed and grouped into two categories, namely the positive and negative perceptions.

The criteria for grouping Statistical Thinking are presented in the table below.

Table 2: Categories of statistical thinking

<table>
<thead>
<tr>
<th>Score of ability</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>57 - 100</td>
<td>High</td>
</tr>
<tr>
<td>34 - 56</td>
<td>Medium</td>
</tr>
<tr>
<td>0 - 33</td>
<td>Low</td>
</tr>
</tbody>
</table>

The categories of grouping Perceptions of Statistics are shown in the table below.

Table 3: Categories of grouping Perceptions of Statistics

<table>
<thead>
<tr>
<th>Perception Score</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 - 125</td>
<td>Positive</td>
</tr>
</tbody>
</table>
In this study, researcher used Chi-square to know about association between statistical thinking variable and perception of statistics variable. Below is data frequency which has shown in Crosstab table form.

Table 4: Cross tabulation between Statistical Thinking and Perception of Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistical Thinking</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Perception</td>
<td>Positive</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>35</td>
</tr>
</tbody>
</table>

From the table above it can be seen crosstab that is based on the ability to think statistically (Statistical Thinking) students obtained 78% have a positive perception and 22% have a negative perception in the group of high KBS. Later in the KBS group were, 29% have a positive perception and 71% have a negative perception; and at lower KBS group, 17% had a positive perception and 83% have a negative perception.

Vice versa from the above table can also be shown the ability to think statistically (Statistical Thinking) students based on their perception of statistics. On the positive perception of the group acquired 39% have a high KBS, 55% had moderate KBS, and 6% had low KBS. Then the group acquired a 6% negative perceptions have a high KBS, KBS 78% have moderate and 16% had low KBS.

From the analysis of the data Chi-Square statistical thinking skills (Statistical Thinking) and the perception of statistics, the obtained Chi-Square test results are shown in Table below.

Table 5: Result of Chi-Square Analysis

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Value</th>
<th>Df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>8,630a</td>
<td>2</td>
<td>.013</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>8,522</td>
<td>2</td>
<td>.014</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>6,947</td>
<td>1</td>
<td>.008</td>
</tr>
</tbody>
</table>
The table above shows the results of analysis using Chi-Square which would then be used to test hypotheses of the study. From the above test results obtained \(\chi^2 = 8.630 \) and \(P_{value} = 0.013 \). Because \(P_{value} < \alpha = 0.05 \) and then \(H_0 \) rejected or \(H_1 \) accepted, which means that there is a significant relationship between Statistical Thinking with the perception of statistics.

It obtained above in line with the opinion of Ajzen and Fishbein (Gerunda, 2009) which states that the perception affects the amount of their efforts to achieve their academic achievement. Likewise with the opinion of Maria and George (2002) which states that students' perception raises a very important factor in influencing attitudes, achievement, education and career choice compared to other variables such as anxiety, Math experience, and confidence.

Furthermore, from the results of the interview obtained data about students' perceptions about the statistics based on the level or category of statistical thinking skills (Statistical Thinking) has. From the results of the interview subjects also obtained feedback on the factors that influence their perception of statistics.

Students have the Statistical Thinking is to have an understanding of the sense objects but the statistics are still lacking understanding of the benefits or usefulness of good statistics. Attention to the subject of statistics is also quite good. That is the perception of the student well enough.

Students Statistical Thinking low have still less understanding about the definition of statistical objects, understanding of the benefits or usefulness of statistics were quite good. But attention to the subject of statistics is still lacking. That is the perception of the majority of students are still lacking.

This was revealed by Widayani (2011) that individuals who hold the perception influenced by the existence of the object perceived and attention. There is also the factors that influence
the perception according ness (1989) is self-concerned and the factors of the situation. Reinforced also by Wibowo (1997) that the psychological state of being calm will always rational thinking, rational mind would produce a true perception.

5. CONCLUSION

Based on the results of Chi-Square test, it was concluded that there is an association between Perceptions of statistics with Statistical Thinking on the education of students majoring in Integrated Social Sciences Faculty of Social Sciences, State University of Makassar.

5. REFERENCES

Martadiputra, B., AP. 2010. *Hasil Uji Coba Instrumen Kemampuan Berpikir Statistis (Statistical Thinking)*. Bandung: PPs UPI.

